PERIYAR UNIVERSITY

NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

Salem-636011, Tamilnadu, India.

SYLLABUS FOR M.Sc. CHEMISTRY DEGREE OF MASTER OF SCIENCE

CHOICE BASED CREDIT SYSTEM

(For candidates admitted in the colleges affiliated to Periyar University from 2023-2024 onwards)

M.Sc., Chemistry Programme. Structure, course work, contact hours, credits and maximum internal and external marks for the students admitted in 2023-2024

		admitted in 2023-2024						
sem	Course	Title of the Course code	Contact Hr/Week	Credit	Int. Mark	Ext Mark	Total Mark	
		SEMESTER - I			1	1	I.	
	CORE COURSE-I	Organic Reaction Mechanism-I	7	5	25	75	100	
	CORE COURSE-II	Structure and Bonding in Inorganic Compounds	7	5	25	75	100	
	CORE COURSE-III	Organic Chemistry Practical	6	4	40	60	100	
Ι	ELECTIVE COURSE-I	PharmaceuticalChemistry/ Nanomaterials and Nanotechnology	5	3	25	75	100	
	ELECTIVE COURSE-II	Electrochemistry/Molecular Spectroscopy	5	3	25	75	100	
			30	20			500	
		SEMESTER - II						
	CORE COURSE-IV	Organic reaction mechanism-II	6	5	25	75	100	
	CORE COURSE-V	Physical Chemistry-I	6	5	25	75	100	
	CORE COURSE-VI	Inorganic Chemistry Practical	6	4	40	60	100	
	ELECTIVE COURSE-III	Medicinal Chemistry/Green Chemistry	4	3	25	75	100	
II	ELECTIVE COURSE-IV	Bio Inorganic Chemistry/Material Science	4	3	25	75	100	
		Human rights	-	1	25	75	100	
	SKILL ENHANCEMENT COURSE-II (SEC-I)	Industrial chemistry	4	2	Inte	rnal Asses	sment	
			30	23			600	
		SEMESTER - IIII			1			
	CORE COURSE-VII	Organic synthesis and Photochemistry	6	5	25	75	100	
	CORE COURSE-VIII	Coordination Chemistry-I	6	5	25	75	100	
	CORE COURSE-IX	Physical Chemistry Practical	6	5	40	60	100	
III	ELECTIVE COURSE-V	Pharmacognosy and Phytochemistry/Biomolecules and Heterocyclic Compounds	3	3	25	75	100	
	Core (Industry Module)-X EDC	(Choose from outside the department)	6	4	25	75	100	
	SKILL ENHANCEMENT COURSE-II (SEC-II)	Preparation of Consumer products	3	2	Internal Assessment			
	INTERNSHIP / INDUSTRIAL ACTIVITY	(Carried out in Summer Vacation at the end of I year – 30 hours)	-	2	-	-	-	
			30	26			500	
		SEMESTER - IV						
	CORE COURSE-XI	Coordination Chemistry-II	6	5	25	75	100	
	CORE COURSE-XII	Physical Chemistry-II	6	5	25	75	100	
IV	ELECTIVE COURSE-VI	Analytical Instrumentation technique Practical (Industry Entrepreneurship)	4	3	40	60	100	
	CORE PROJECT	Core Project with viva voce	10	7	100	50+50	200	
	SKILL ENHANCEMENT COURSE-II (SEC-III)	Professional Competency Skill Enhancement Course	4	2	Internal Assessment			
	EXTENSION ACTIVITY	Extension Activity	-	1	Performance based assessment			
			30	23			500	
		TOTAL		92			2100	

CONTENTS

1.		Preamble
2.		StructureofCourse
3.		LearningandTeachingActivities
4.		TutorialActivities
5.		LaboratoryActivities
6.		Field StudyActivities
7.		AssessmentActivities
	7.1	Assessmentprinciples
	7.2	AssessmentDetails
8.		Teachingmethodologies
9.		FacultyCourseFile
10.		TemplateforPGProgrammein Chemistry
11.		TemplateforSemester
12.		InstructionsforCourseTransaction
13.		TestingPattern
14.		DifferentTypesofCourses
15.		${\bf Elective Courses} ({\bf ED from other Department Experts})$
16.		SkillDevelopmentCourses
17.		Institution-Industry-Interaction
18.		Syllabus

1. Preamble

Taxonomy forms three learning domains: the cognitive (knowledge), affective (attitude), and psychomotor (skill).

This classification enables to estimate the learning capabilities of students.

Briefly, it is aimed to restructure the curriculum as student-oriented, skill-based, and institution-industry-interactioncurriculum with the various courses under

"Outcome Based Education with Problem Based Courses, Project Based Courses, and Industry Aligned Programmes" having revised Bloom's Taxonomy for evaluating students skills.

1. CognitiveDomain

(Lowerlevels:K1:Remembering;K2:Understanding;K3:Applying;Higherlevels:K4:Analysing;K5:Evaluating;K6:Creating)

2. AffectiveDomain

II

III

IV

3. PsychomotorDomain

2. StructureofCourse

CourseCode	Cou	rseName		Credits
LectureHours:(L)	s:(L) TutorialHours: LabPractice			
Perweek	(T) Perweek Hours: (P) Perweek			Perweek
CourseCategory:	Year&Semester:		Admis	sionYear:
Pre-requisite				
Linksto otherCourses				
LearningObjectives:(forteach	ers:whattheyhavetodoin	theclass/lab/field	d)	
CourseOutcomes:(forstudents	s: Toknowwhattheyareg	oingtolearn)		
CO1:CO2:CO3:CO4:CO5:				
Recap:(notforexamination)M	otivation/previouslectur	e/relevantportio	nsrequ	iredforthe
course)[Thisisdoneduring2Tu	torialhours)	•	•	
Units	Conte	ents		RequiredHours
I				15

15

15

15 15

Component(is a par to internal componentonly,	Questions related to the above topics ,from various competitive examinations UPSC/TRB/NET/UGC-CSIR/GATE/TNPSC/others to be solved (To be discussed during the Tutorial hour)
questionpaper)	

Skills acquired from the course

Knowledge ,Problem Solving ,Analytical ability ,Professional Competency Professional Communication and Transferrable Skill

LearningResources:

RecommendedTexts
ReferenceBooks
Webresources

BoardofStudiesDate:

3. LearningandTeachingActivities

3.1 TopicwiseDeliverymethod

HourCount	Topic	Unit	ModeofDelivery	

3.2 WorkLoad

The information below is provided a saguide to assist

studentsinengagingappropriately with the course requirements.

Activity	Quantity	Workloadperiods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
CycleTestorsimilar	2	4
ModelTestorsimilar	1	3
UniversityExam	1	3
	Total	90 Periods

TutorialActivities

TutorialCount	Top	ic
---------------	-----	----

- 4. LaboratoryActivities
- 5. Field StudyActivities
- 6. AssessmentActivities

AssessmentPrinciples:

Assessment forthis courses based on the following principles

- 1. Assessment must encouragedrainforce learning.
- 2. Assessment must measure achievement tofthestatedlearning objectives.
- 3. Assessmentmustenable robust and fair judgmentsaboutstudent performance.
- 4. AssessmentpracticemustbefairandequitabletostudentsandgivethemtheOpportu nitytodemonstratewhattheylearned.
- 5. Assessmentmustmaintainacademicstandards.

AssessmentDetails:

AssessmentItem	DistributedDueDate	Weightage	Cumulative Weightage
Assignment1	3 rd week	2%	2%
Assignment2	6 th Week	2%	4%
CycleTest-I	7 th Week	6%	10%
Assignment3	8 th Week	2%	12%
Assignment4	11 th Week	2%	14%
CycleTest-II	12 th Week	6%	20%
Assignment5	14 th Week	2%	22%
ModelExam	15 th Week	13%	35%
Attendance	Allweeks as perthe AcademicCalendar	5%	40%
UniversityExam	17 th Week	60%	100%

7. TEACHINGMETHODOLOGIES

- TraditionalTeachingmethodlikeChalkandBoard, VirtualClassroom, LCDprojector, SmartClass, VideoConference, GuestLectures.
- Askingstudentstoformulateaproblemfromatopiccoveredin aweek'stimeAssignment,ClassTest, Sliptest
- Askingstudentstousestate-of-the-arttechnologies/softwaretosolveproblems Applications, UseofChemdraw,Chempaint software
- Introducing students to applications before teaching the theory
- Trainingstudentstoengage itself-studywithoutrelyingonfaculty(forexample-libraryandinternetsearch,manualandhandbookusage,etc.)
- Library, Net Surfing, Manuals, NPTEL Course Material spublished in the website
- Otheruniversitywebsites.

•

8. FacultyCourseFileStructure CONTENT

- a. AcademicSchedule
- b. StudentsNameList
- c. TimeTable
- d. Syllabus
- e. LessonPlan
- f. StaffWorkload
- $g. \ \ Course Design (content, Course Outcomes (COs), Delivery method, mapping of COs with Programme Outcomes (POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)$
- h. SampleCOAssessmentTools.
- i. FacultyCourseAssessment Report(FCAR)
- j. CourseEvaluationSheet
- k. TeachingMaterials(PPT,OHPetc)
- l. Lecture Notes
- m. HomeAssignmentQuestions
- n. TutorialSheets
- o. RemedialClass Record, ifany.
- p. Projectsrelated to the Course
- q. LaboratoryExperimentsrelated to the Courses
- r. InternalQuestionPaper
- s. ExternalQuestionPaper
- t. SampleHomeAssignmentAnswerSheets
- ${\bf u.} \ \ {\bf Three best, three middle level and three average Answers} \\ \ {\bf heets}$
- v. ResultAnalysis(COwiseandwholeclass)
- w. QuestionBank

for Higherstudies Preparation (GATE/Place ment)

x. Listof mentees and their academic achievements

${\bf 9.} \quad Template for PGP rogramme in \ Chemistry$

${\bf M.Sc, Chemistry Curriculum Design}$

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credit
1.1.Core-I	5	2.1. Core-IV	5	3.1.Core-VII	5	4.1.Core-XI	5
1.2Core-II	5	2.2Core-V	5	3.2Core-VII	5	4.2Core-XII	5
1.3Core–III	4	2.3Core–VI	4	3.3Core–IX	5	4.3Core Project with VIVA- VOCE	7
1.4Elective(Generic/	3	2.4Elective(Generic/	3	3.4Elective	3	4.4Elective-VI(Industry	3
DisciplineCentric)- I		DisciplineCentric)— III		Generic/Discipline		Entrepreneurship)	
		-		Centric)–V			
1.5Elective(Generic/	3	2.5Elective(Generic/	3	3.5CoreIndustry	4	4.5Skill Enhancement	2
Discipline Centric)-II		Discipline Centric)-IV		Module -X		Course – Professional	
		•				Competency Skill-SEC-3	
						4.6ExtensionActivity	1
		2.6SkillEnhancementCourse SEC-1	2	3.6 Skill Enhancement Course— Term Paper and Seminar Presentation	2		
				SEC-2			
		2.7Human Rights	1	3.7Internship/Industrial Activity	2		
	20		23		26		23
		ı		I	1	Total Credit Points	92

${\bf Credit Distribution for PGP rogramme in\ Chemistry}$

M.Sc., Chemistry

First YearSemester-I

	Courses	Credit	Hours per
			Week(L/T/P)
PartA	CoreCourses3(CC1,CC2,CC3)	14	20
	ElectiveCourses2(Generic/DisciplineSpecific)EC1,EC2	6	10
		20	30

Semester-II

	Courses	Credit	Hours per
			Week(L/T/P)
PartA	CoreCourses3(CC4,CC5,CC6)	14	18
	ElectiveCourse2 (Generic/DisciplineSpecific)EC3, EC4	6	8
PartB	SkillEnhancementCourse-SEC-1(One fromGroup G)	2	4
	Human Rights	1	
		23	30

SecondYear-Semester-III

	Courses	Credit	Hours per
			Week(L/T/P)
PartA	CoreCourses3(CC7,CC8,CC9)	15	18
	ElectiveCourse1(Generic/DisciplineSpecific)EC5	3	3
	CoreIndustryModule-CC10	4	6
PartB	SkillEnhancementCourse-SEC3ProfessionalCommunication	2	3
	Skill(TermPaper&Seminar Presentation)		
	Internship/Industrial Activity(Carried out in Summer	2	-
	Vacation at		
	The end of I year– 30 hours)		
		26	30

Semester-IV

Part	Courses	Credit	Hours per Week(L/T/P)
PartA	CoreCourses3(CC11,CC12)	10	12
	Project with Viva voce(CC13)	7	10
	ElectiveCourse(Generic/DisciplineSpecific)EC6	3	4
PartB	Duofossianal Competency Skill Enhancement	2	4
rarub	ProfessionalCompetencySkillEnhancement CourseTrainingforCompetitive Examinations • ChemistryforNET/UGC-CSIR/SET/ TRBCompetitiveExaminations(2hours) • GeneralStudiesforUPSC/TNPSC/OtherCompetitiveExaminations(2hours) OR ChemistryforAdvancedResearchStudies(4hours)	2	4
PartC	Extension Activity(Can be carriedoutfromSemIIto SemIV)	1	
		23	30

Component wise Credit Distribution

Credits	SemI	SemII	SemIII	SemIV	Total
Part- A	20	20	22	20	82
Part –B					
(i) SEC	-	2	2	2	
					10
(ii)Summer Internship/Industrial			2		
Training					
Part –C Extension Activity				1	
Human Rights		1			
Total	20	23	26	23	92

Part A component and Part B (i) will be taken into account for CGPA calculation for thepostgraduateprogrammeandtheothercomponentsPartBandPartChavetobecompletedduring the duration of the programme as per the norms, to be eligible for obtaining the PGdegree

M.Sc. Chemistry

Illustration-I

	FirstYear Semester-I	Credit	Hoursper
			week(L/T/P)
PartA	CC1-Organic Reaction Mechanism-I	5	7(5L+2T)
	CC2-Structure and Bonding in Inorganic Compounds	5	7(5L+2T)
	CC3 -Organic Chemistry Practical	4	6(5L+1T)
	Elective -I (Generic/DisciplineSpecific) (OnefromGroup A)	3	5(4L+1T)
	Pharmaceutical Chemistry/Nanomaterials and Nanotechnology		
	Elective-II (Generic/DisciplineSpecific) (OnefromGroupB)	3	5(4L+1T)
	Electrochemistry/Molecular Spectroscopy		
	Total	20	30

	Semester-II	Credit	Hours per
			week(L/T/P)
PartA	CC4-Organic reaction mechanism-II	5	6(5L+1T)
	CC5-Physical Chemistry-I	5	6(5L+1T)
	CC6-Inorganic Chemistry Practical	4	6(5L+1T)
	Elective-III(Generic/DisciplineSpecific) (OnefromGroupC)	3	4
	Medicinal Chemistry/Green Chemistry		
	Elective-IV (OnefromGroupD)	3	4
	Bio Inorganic Chemistry/Material Science		
PartB	SkillEnhancementCourse-SEC-1(One fromGroupG)	2	4
	Human Rights	1	
	Total	23	30

	SecondYear - Semester-III	Credit	Hoursper
			week(L/T/P)
PartA	CC7- Organic synthesis and Photochemistry	5	6(5L+1T)
	CC8 –Coordination Chemistry-I	5	6(5L+1T)
	CC9 – Physical Chemistry Practical	5	6(5L+1T)
	Elective-V(Generic/DisciplineSpecific) (OnefromGroupE)	3	3
	Pharmacognosy and Phytochemistry		
	CoreIndustryModule CC-10	4	6
PartB	Internship/IndustrialActivity	2	
	(Carriedout inSummerVacationattheend ofIyear-30hours)		
	SkillEnhancementCourse-SEC-2	2	3
	Total	26	30

	Semester-IV	Credit	Hoursper week(L/T/P)
PartA	CC11-Coordination Chemistry-II	5	6(5L+1T)
	CC12–Physical Chemistry-II	5	6(5L+1T)
	Core Project with vivavoce	7	10
	Elective-VI Analytical Instrumentation technique Practical ((Industry Entrepreneurship)	3	4
PartB	ProfessionalCompetencySkillEnhancement CourseTrainingforCompetitive Examinations	2	4
	 ChemistryforNET/UGC- CSIR/SET/TRBCompetitiveExaminations(2hours) GeneralStudiesforUPSC/TNPSC/OtherCompetitiveExaminations(2hours) 		
	OR Chemistry for AdvancedResearchStudies(4hours)		
PartC	ExtensionActivity	1	
	Total	23	30

TOTALCREDITS:92

10. TemplateforSemester

Code	Category	TitleofthePaper	Mar	ks	DurationforUE	Credits
			(Max	100)		
			CIA	UE	<u> </u>	
		Semester	<u>'-I</u>	•		
PartA	CoreI		25	75	3Hrs	5
	CoreII		25	75	3Hrs	5
	CoreIII		40	60	6Hrs	4
	ElectiveI	Elective-				
		I (Chooseonefrom	25	75	3Hrs	3
		Group-A)				
	ElectiveII	Elective-II(Choose one				
		fromGroup-B)	25	75	3Hrs	3
		Semeste	r-II			
PartA	CoreIV		25	75	3Hrs	5
	CoreV		25	75	3Hrs	5
	CoreVI		40	60	6Hrs	4
	ElectiveIII	Elective-III				
		(Choose one	25	75	3Hrs	3
		fromGroup-C)				
	ElectiveIV	Elective-				
		IV(Chooseonefrom	25	75	3Hrs	3
		Group-D)				
	Human Rights	• /	25	75	3Hrs	1
PartB	SkillEnh	(Choose one	Inton	nol A co	sessment	
1 artd		`	Inter	11a1AS	essinent	2
	ancemen	fromGroup-G)				<u> </u>
	t					
	Course-SEC-1					

Seme	ester-III					
PartA	Core VII		25	75	3Hrs	5
	Core VIII		25	75	3Hrs	5
	CoreIX		40	60	6Hrs	5
	Elective/EDV	Elective-VI /ED-V(Chooseonefrom Group-E)	25	75	3Hrs	3
	IndustryModul eCore-X	(Choosefrom outside theDepartment)	25	75	3Hrs	4
PartB						
	Skill Enhancement Course-SEC-2	(Choose one from Group-G)	<u> </u>			2
		ial- VacationActivity				2
	ter-IV		_	1	1	
PartA			25	75	3Hrs	5
	CoreXII		25	75	3Hrs	5
	ProjectwithVIVA VOCE		100	100		7
	ElectiveVI	Elective-VI Analytical Instrumentation technique Practical (Industry Entrepreneurship)	40	60	4Hrs	3
PartB	SkillEnhance ment Course-SEC-3	ProfessionalCompetency Skill EnhancementCourse	Inte nt	rnalA	ssessme	2
PartC	Extension Activity	Performancebasedassessment				1
	<u> </u>		7	CotalC	Credits	92

ElectiveCourses

Coursesaregrouped (GroupAtoGroupF)soastoincludetopicsfrom

PureChemistry (PC), AppliedChemistry (AC) and IndustrialComponents(IC) like pharmaceutical industries, Polymer lab sources forflexibilityofchoicebythe stakeholders/institutions.

SemesterI:ElectiveIandElectiveII

ElectiveI tobe chosenfromGroupAandElective II tobe chosenfromGroupB

GroupA:(PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology

GroupB:(PC/AC/IC)

- 1. Electrochemistry
- 2. Molecular Spectroscopy

SemesterII:ElectiveIII& ElectiveIV

Elective III to be chosen from Group C and Elective IV to be chosen

from Group DGroup C: (PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

GroupD:(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

SemesterIII:ElectiveV

Elective Vtobe chosenfromGroupE.

GroupE:(PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

SemesterIV:ElectiveVI

ElectiveVIto be chosen fromGroupF.

GroupF:(PC/AC/IC)

- 1. Chemistry of Natural products
- 2. Polymer Chemistry

SkillEnhancementCourses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders /institutions.

GroupG(SkillEnhancementCourses)SEC:(Practical based paper)

- ➤ ComputationalChemistry
- > 3D printing in Chemistry
- > Preparation of Consumer products
- ➤ Chemistry in everyday life
- Cosmetic Chemistry
- Origin lab
- ➤ IndustrialChemistry
- ➤ ResearchToolsand Techniques

AbilityEnhancement Courses

➤ SoftSkillcourses

Extra Disciplinary Courses for other Departments (not for Mathematics students)
Students from other Departments may also choose any one of the following as Extra Disciplinary Course.

ED-I: Chemistry for Life Sciences

ED-II: Chemical conservation

ED-III: Chemistry in food preservation

ED-IV: Chemistry for Social studies

ED-V: Chemistry in consumer products

11. InstructionsforCourseTransaction

Courses	Lecture	Tutorial	LabPractice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
LabPracticeCourses	-	15	75	90
Project	20		70	90

12. Testing Pattern (25+75)

13.1Internl

Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for amaximum of 25 marks. The duration of each test shall be one/one and half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be twotests in Theory part and two tests in Laboratory part. Choose one best from Theory part and otherbest from the two Laboratory part. The average of the best two can be treated as the CIA for amaximumof25marks. The duration of each test shall be one/one and a halfhour.

Thereis noimprovement for CIA of both theory and laboratory, and, also for University End Semester Examination.

13.2 WrittenExamination:TheoryPaper (Bloom'sTaxonomybased) Question Paper Model

Contract of the contract of th	
	Maximum75Marks
IntendedLearningSkills	Passing Minimum: 50% Duration: Three Hour
	Part–A(10x2 =20 Marks)
	AnswerALLquestions
	EachQuestion carries2marks
MemoryRecall/ Example/	
CounterExample/KnowledgeabouttheConcepts/Understanding	Twoquestionsfromeachunit
	Question1to Question10
	Part–B(5x5 =25Marks)
	AnswerALL questions
	Eachquestionscarries5Marks
Descriptions/Application(problems)	Either-orType
	Bothpartsofeachquestionfromthesame unit
	Question11(a)or11(b)
	То
	Question15(a)or15(b)
	Part-C (3x 10 = 30 Marks)Answer any THR
	questionsEachquestioncarries10Marks
Analysis/Synthesis/Evaluation	ThereshallbeFIVEquestionscoveringallthefiv
	Question16to Question20

Eachquestionshould carrythecourseoutcomeand cognitivelevelforinstance,

- 1. [CO1:K2]Questionxxxx
- 2. [CO3:K1]Questionxxxx
- **14.** DifferentTypesofCourses
- (i) CoreCourses(Illustrative)
 - 1. Organic Reaction mechanism I & II
 - 2. Structure and bonding in Inorganic compounds
 - 3. Organic Chemistry Practical
 - 4. Physical Chemistry-I & II
 - 5. Inorganic Chemistry Practical
 - 6. Organic synthesis and Photochemistry
 - 7. Coordination Chemistry-I & II
 - 8. Physical Chemistry Practical
 - 9. Analytical Instrumentation technique practical
- (ii) ElectiveCourses(EDwithintheDepartmentExperts)(Illustrative)
 - 1. Pharmaceutical Chemistry
 - 2. Nanomaterials and Nanotechnology
 - 3. Electrochemistry
 - 4. Molecular Spectroscopy
 - 5. Medicinal Chemistry
 - 6. Green Chemistry
 - 7. Pharmacognosy and Phytochemistry
 - 8. Biomolecules and Heterocyclic compounds
 - 9. Bio inorganic Chemistry
 - 10. Material Science
 - 11. Chemistry of Natural products
 - 12. Polymer chemistry
- (iii) ElectiveCourses(EDfromotherDepartmentExperts)
- (iv) SkillDevelopmentCourses
- $(v) \ Institution-Industry-Interaction(Industryaligned Courses) \\$

 $Programmes\ / course\ work/field\ study/Modeling\ the\ Industry$

Problem/StatisticalAnalysis/Commerce-Industryrelatedproblems/MOU withIndustryandthelike activities.

	TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION				
Programme	M.Sc.				
Programme Code					
Duration	2 years for PG				
Programme	PO1: Problem Solving Skill				
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making. PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.				
	PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals. PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment. PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur. PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society. PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective. PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.				
Programme Specific Outcomes (PSOs)	PSO1 – Placement To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions. PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations. PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development. PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world. PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.				

SEMESTER-I

Title of the Course ORGANIC REACTION MECHANISM - I										
Paper No.	Core I									
Category	Core	Year	I	Credits	4	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lab Practice Tota							
hours per week	4	1		-		5				
Prerequisites		pts of organic		•						
Objectives of the course	· · · · · · · · · · · · · · · · · · ·					reaction organic ous types				
compounds.							D			
Course Out line	UNIT-I:Methods of Determination of Reaction Mechanism: Reaction									
intermediates, The transition state, Reaction coordina						intermediates, The transition state, Reaction coordinate diagrams,				
	Thermodyn	amic and k	inetic	requireme	ents	of reactions:	Hammond			
	postulate.M	ethods of de	eterm	ining mecha	anism	: non-kinetic	methods -			
	product ana	alysis, determi	inatio	n of interme	ediate	es-isolation, de	tection, and			
	trapping. C	ross-over exp	erime	ents, isotopio	e labe	elling, isotope	effects and			
	stereo cher	mical evidend	ces.	Kinetic met	thods	- relation o	of rate and			
	mechanism	Effect of strue	cture	on reactivity	y: Ha	mmett and Taf	ft equations.			
	Linear free	energy relatio	nship	, partial rate	facto	or, substituent a	and reaction			
	constants.									
	UNIT-II: Aromaticity, Aromatic and Aliphatic Electrophilic Substitution:									
	Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and									
	annulenes.	Aromatic elect	troph	ilic substituti	ion: C	Orientation and	reactivity of			
	di- and pol	ysubstituted p	heno	l, nitrobenze	ene a	nd halobenzen	e. Reactions			
	involving	nitrogen elec	troph	iles: nitratio	on, n	aitrosation and	l diazonium			
	coupling;	Sulphur elect	rophi	les: sulpho	natio	n; Halogen e	electrophiles:			
	chlorination	and brom	inatio	on; Carbon	ele	ectrophiles: F	riedel-Crafts			
	alkylation,	acylation a	nd	arylation r	eactio	ons.Aliphatic	electrophilic			
	substitution	Mechanisms:	SE2	and SEi, SE	1- Me	echanism and e	vidences.			

UNIT-III: Aromatic and Aliphatic Nucleophilic Substitution:

Aromatic nucleophilic substitution: Mechanisms - S_NAr , S_N1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attackingnucleophile. Reactions: Oxygen and Sulphur-nucleophiles, Bucherer and Rosenmund reactions, von Richter, Sommelet- Hauser and Smiles rearrangements. S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. S_N1 , S_N2 , S_Ni , and S_E1 mechanism and evidences, Swain- Scott, Grunwald-Winstein relationship - Ambident nucleophiles.

UNIT-IV:Stereochemistry-I:

Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation.D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidenecycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. Criteria for optical purity: Resolution of racemic modifications. transformations, asymmetric asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis.

UNIT-V:Stereochemistry-II:

Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett Principle.Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule.Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration.

Γ	
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
course	11010001011111 COMMINUMENT WILL TANKE 2710010 SIMILES
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition,
Text	John-Wiley and Sons.2001.
TOXU	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New
	Age International Publishers, 2015.
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,
	Oxford University Press, 2014.
D. C	
Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw
	Hill, 2000.
	5. I. L. Finar, Organic chemistry, Vol-1&2, 6 th edition, Pearson
	Education Asia, 2004.
Website and	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u>
e-learning	<u>chemistry/organic</u>
source	2. https://www.organic-chemistry.org/
Course Learning	Outcomes (for Manning with POs and PSOs)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5:To design and synthesize new organic compounds by correlating the stereochemistryof organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong - 3 Medium-2 Low-1
Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

	Methods of Evaluation							
	Continuous Internal Assessment Test							
Internal	Assignments	25 Marks						
Evaluation	Seminars	23 IVIdIKS						
	Attendance and Class Participation							
External Evaluation	End Semester Examination	75 Marks						
	Total	100 Marks						
	Methods of Assessment							
Recall (K1)	Simple definitions, MCQ, Recall steps, Co	oncept definitions.						
Understand/ Comprehend (K2)	MCQ, True/False, Short essays, Concept e overview.	explanations, short summary or						
Application (K3)	Suggest idea/concept with examples, suggestive Observe, Explain.	gest formulae, solve problems,						
Analyze (K4)	Analyze (K4) Problem-solving questionsfinish a procedure in many steps, Differentiate between various ideas, Map knowledge.							
Evaluate (K5)	Longer essay/ Evaluation essay, Critique of	or justify with pros and cons.						
Create (K6)	ituations, Discussion, Debating							

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the Course	STRUCT	TURE AND	BO	NDING I	N IN	ORGANIC CO	OMPOUNDS
Paper No.	Core II						
Category	Core	Year	I	Credits	4	Course	
,		Semester	I			Code	
Instructional	Lecture	Tutorial	L	ab Practi	ce	T	otal
hours per week	4	1		-	• 4		5
Prerequisites Objectives of the		ncepts of In					and and
Objectives of the course	clusters.	nine the str	uctui	ai propert	ies o	i main group o	compounds and
Course		fundamenta	l kn	owledge (on th	ne structural as	spects of ionic
	crystals.	Tunuamenta	ıı Kii	owicage (лі п	ic structurar a.	spects of fome
	-	arize variou	s diff	raction and	d mic	croscopic techni	iaues.
						ne defects in ion	
		te the struct					
Course Outline	UNIT-I:	Structure of	f mai	in group c	comp	ounds and clus	sters:
	VB theor	y – Effect o	f lon	e pair and	elec	tro negativity o	of atoms (Bent's
	rule) on	the geome	etry	of the m	olec	ules; Structure	of silicates -
	application	ons of Pa	uling	s rule c	of e	lectrovalence	- isomorphous
	replacem	ents in sili	icates	s – ortho	, me	eta and pyro	silicates – one
	dimensio	nal, two	dim	ensional	and	three-dimensi	ional silicates.
	Structure	of silicones	s, Str	uctural and	d bor	nding features o	of B-N, S-N and
	P-N com	pounds; Po	ly ac	ids – type	s, ex	amples and str	uctures; Borane
	cluster:	Structural	featu	res of cl	loso,	nido, arachai	no and klado;
	carboran	es, hetero a	and 1	metallobor	anes	; Wade's rule	to predict the
	structure	of borane	cluste	er; main g	group	clusters –zint	l ions and mno
	rule.						
	UNIT-II	Solid state	che	mistry – I	:		
	Ionic cry	stals: Packi	ng o	f ions in	simp	le, hexagonal a	and cubic close
	packing,	voids in c	rysta	l lattice,	Radi	us ratio, Cryst	al systems and
	Bravis la	ttices, Symn	netry	operation	s in c	crystals, glide p	lanes and screw
	axis; poir	nt group and	l spac	ce group;S	olid	state energetics	: Lattice energy
	– Born-L	ande equation	on - I	Kapustinsk	i equ	ation, Madelun	g constant.
	UNIT-II	I:Solid state	e che	mistry – I	I:		
	Structura	l features o	of the	e crystal s	ystei	ns: Rock salt,	zinc blende &
	wurtzite,	fluorite and	l anti	i-fluorite,	rutile	and anatase, o	cadmium iodide
	and nicke	el arsenide;	Spin	els -norma	al an	d inverse types	and perovskite

structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples. **UNIT-IV:**Techniques in solid state chemistry: X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation; Interpretation of XRD data – JCPDS files, Phase purity, Scherrer formula, lattice constants calculation; Systematic absence of reflections; Electron diffraction technique principle, instrumentation and application. Electron microscopy difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM. **UNIT-V:Band theory and defects in solids** Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended 1. A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd., 2014. Text 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001. 3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press, 2012. 4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977. 5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: NewYork, 1983. Reference Books 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3rd Ed, 1994. 2. R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013.

3. C N R Rao and J Gopalakrishnan, New Directions in Solid State

	 Chemistry, 2nd Edition, Cambridge University Press, 199. 4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982. 5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry, 3rd ed.; Oxford University Press; London, 2001.
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5:To understand the principles of diffraction techniques and microscopic techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the		ORGA	NIC	CHEMI	STR	Y PRACTICA	A L		
Course									
Paper No.	Core III			ı		I	1		
Category	Core	Year	I	Credits	4	Course			
		Semester	I			Code			
Instructional	Lecture	Tutorial	I	ab Practi	ce	Ţ.	<u> Fotal</u>		
hours per week	-	1	L	4			5		
Prerequisites		cepts of or							
Objectives of the	To understand the concept of separation, qualitative analysis and								
course	preparation of organic compounds.								
	To develo	op analytica	al sk	ill in the	hand	lling of chemi	ical reagents for		
	separation	n of binary a	and to	ernary orga	anic 1	mixtures.			
	To analy	ze the sep	oarate	ed organi	c co	mponents sys	stematically and		
	derivative	them suital	bly.						
	To constr	ruct suitable	e exp	erimental	setu	p for the orga	anic preparations		
	_	two stages.							
	_			purification	on a	nd drying tec	chniques for the		
		d processing							
Course Outline		eparation a		-					
		componen							
		ee compone		xtures.					
	UNIT-II:	Estimations	:						
	a) l	Estimation o	of Ph	enol (bron	ninati	on)			
		Estimation of		•		,			
	,			,		ne (iodimetry)			
	d) I	Estimation o	of Gl	ucose (red	ox)				
	e) l	Estimation o	of As	corbic acid	d (ioc	limetry)			
					_	oups (reduction	n)		
		Estimation of				• .			
	· ·	Estimation of				• .			
						ster (alkalimeti	ry)		
	_	Estimation of	-		_	-			
		Estimation of			(ace	etyfation)			
		:Two stage Bromoaceta	-		ilina				
		-Nitroanilin							
	′ •	3,5-Tribrom				ne			
		cetyl salicyc							
		enzilic acid							
	f) <i>m</i> -Nitroaniline from nitrobenzene								
	g) m	-Nitrobenzo	oic ac	eid from m	ethyl	benzoate			
Extended	Questions	s related to t	he al	ove topic	s, fro	m various com	petitive		
Professional							/TNPSC others		
Component	to be solv	red							
		scussed duri							
Skills acquired		-				ability, Profes			
from this course	Competer	ncy, Profess	ional	Commun	icatio	on and Transfe	rable skills.		

Recommended	1. B.S. Furniss, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell,
Text	Vogel's Practical Organic Chemistry. 5 th edn. ELBS, 1989
	2. Raj K. Bansal, Laboratory manual of Organic Chemistry, III Edn.,
	New Age International (P) Ltd. 1996.
	3. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry Lab
	Manual, New Ed., SV Publishers 2006
	4. Chemdraw 8.0 to 16.0, Perkin Elmer-User Guide Version 16.0,
	CambridgeSoft Corporation.
Reference Books	1. B.S. Furniss, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell,
	Vogel's Practical Organic Chemistry. 5 th edn. ELBS, 1989
	2. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry Lab
	Manual, New Ed., SV Publishers 2006
	3. P. S. Subramanian, R. Gopalan, K. Rangarajan, Elements of
	Analytical Chemistry, Sultan Chand & Sons, New Delhi, 2003.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by variouschemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course		РНА	RM	ACEUTIC	CAL	CHEMISTRY	<i>I</i>
Paper No.	Elective 1	[
Category	Elective	Year	I	Credits	4	Course	
		Semester	-			Code	
Instructional	Lecture	Tutorial	I	ab Practi	ce]	Total
hours per week	4	1	<u> </u>	-			5
Prerequisites Objectives of the		owledge on				mb amm a agyti agl	ah amiatur
Objectives of the course						pharmaceutical ctions of variou	
Course				_			he consequences
	of various		io K	now the m	прог	tance as wen t	ne consequences
		_	on the	e various a	nalys	sis and techniqu	ues.
						structural activ	vities.
Course Outline	UNIT-I:	Physical pi	ropei	rties in Ph	arma	aceuticals:	
	Physical	properties of	of dr	ug molecu	le:	physical prope	erties. Refractive
	index- D	efinition, e	expla	nation, fo	rmul	a, importance,	, determination,
	specific &	z molar refr	actio	n. Optical	activ	rity\rotation- m	onochromatic &
	polychron	natic light,	optic	cal activity	, ang	ale of rotation,	specific rotation
	examples	, measuren	nent	of optica	l ac	tivity. Dielect	ric constant &
	Induced	Polarizat	ion-	Dielecti	ric	constant e	explanation &
	determina	tion.Rheolo	ogy	of pharn	nacei	ıtical systems	s: Introduction,
	Definition	n, Applicati	ions,	concept o	of vis	scosity, Newto	on's law offlow,
	Kinemati	c, Relative	e, S	Specific,	Redu	iced & Intri	insic viscosity.
	Newtonia	n system, n	non-N	Vewtonian	syste	em- Plastic flov	w, Pseudoplastic
	flow, Dil	atent flow.	Visc	cosity mea	surer	nents- selectio	on of viscometer
	for Newto	onian and no	on-N	ewtonian s	ystei	n.	
	UNIT-II:						
	Isotopic I	Dilution ana	ılysis	:principle	and a	applications, N	eutron activation
	analysis:	Principle,	adva	ntages and	d lin	nitations, Scin	tillationcounters.
	Bodyscan	ning. Intro	oduct	ion to ra	diop	harmaceuticals	s. Properties of
	various	types of	radi	opharmace	utica	als, Radiopha	rmaceuticals as
	diagnostic	es, as the	rapeu	itics, for	rese	arch and ster	rilization,Physico
	Chemical	Properties	and	drug actio	on. I	Physico chemic	cal properties of
	drugs (a)	Partition of	coeff	icient, (b)	solu	ibility (c) surf	face activity, (d)
		ionization.					
	UNIT-III	:Drug dos	age a	nd produc	ct de	velopment:	
	Introducti	on to dru	ıg d	osage For	ms	& Drug Del	ivery system –

Definition of Common terms. Drug Regulation and control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of drugs products, need for a dosage form, classification of dosage forms. Drug dosage and product development. Introduction to drug dosage Forms & Drug Delivery system – Definition of Common terms. Drug Regulation and control, pharmacopoeias formularies, sources of drug, drug nomenclature, routes of administration of drugs products, need for a dosage form, classification of dosage forms.

UNIT-IV:Development of new drugs:

Introduction, procedure followed in drug design, the research for lead compounds, molecular modification of lead compounds. Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, bioisosterism, inductive effect, isoterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory,4.3Quantitative structure activity relationship(QSAR): Development of QSAR, drug receptor interactions, the additivity of physico-chemical parameters, group contributions, lipophilicity parameters, electronic parameter, ionizationconstants, steric parameters, chelation parameters, redox potential, indicator-variables.

UNIT-V:Computers in Pharmaceutical Chemistry:

Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/Odevices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry – least square fit, solution to simultaneous equations, interpolation, extrapolation, data smoothing, and numerical differentiation and integrations.

Extended
Professional
Component (is a
part of internal
component only,
Not to be included

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	Physical Chemistry- Bahl and Tuli.
Text	2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh
	PrakashanC.V.S. Subramanyam.
	3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R
	Chatwal, Himalaya Publishing house.
	4. Instrumental method of Analysis: Hubert H, Willard,7th edition.
	5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S.
	Chand & company Ltd.Pharmaceutical Chemistry by Dr. S.
	Lakshmi, Sultanchand & Sons.
Reference Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi.
	3. Physical Pharmacy and Pharmaceutical Sciences by Martins,
	Patrick J. Sinko, Lippincott. William and Wilkins.
	4. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter,
	CBS Publisher Ltd.
	5. Ansels pharmaceutical Dosage forms and Drug Delivery System by
	Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.
Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5:To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	N	IANO MAT	ΓERI	IALS ANI) NA	NO TECHNO	OLOGY	
Course Paper No.	Elective 1	Ī						
Category	Elective	Year	Ι	Credits	4	Course		
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	I	ab Practi	ce	Т	Total	
hours per week	Pogia km	1		-	** O.M.	d motorial sois	5	
Prerequisites Objectives of the						d material scientials and nano te		
course			-					
	To understand the various types of nano materials and their properties. To understand the applications of synthetically important nano							
	materials.							
	new tech		acteri	istics of va	rious	s nano material	s synthesized by	
		_	outes	for synthe	etical	ly used new na	no materials.	
Course Outline		ntroduction	of			*	anotechnologies	
	Introducti	on-role of	size,	, classifica	ation-	-0D, 1D, 2D,	3D. Synthesis-	
	Bottom -	Up, Top-D	own	, consolida	ation	of Nano power	ders.Features of	
	nanostruc	tures, Back	grou	nd of nano	ostru	ctures.Techniqu	ues of synthesis	
	of nano	materials,	Tool	s of the	e na	anoscience. A	Applications of	
	nanomate	rials and tec	chnol	ogies.				
	UNIT-II:	Bonding a	nd st	ructure of	the	nanomaterials	S	
	Predicting	g the Ty	ype	of Bon	ding	in a Sub	ostance crystal	
	structure.	Metallic na	nopa	rticles, Su	ırface	es of Material	ls, Nanoparticle	
	Size and	Properties.	Synth	nesis- Phys	sical	and chemical	methods - inert	
	gas cond	ensation, ar	c dis	scharge, la	iser a	ablation, sol-ge	el, solvothermal	
	and hydro	othermal-C	VD-t	ypes, meta	ıllo c	organic, plasma	a enhanced, and	
	low-press	ure CVD. N	Лісго	wave assis	sted a	and electrochen	nical synthesis.	
	UNIT-III	:Mechanic	al pr	operties o	f ma	terials		
	Theories	relevant	to n	nechanical	pro	operties.Techni	iques to study	
	mechanic	al propertie	s of	nanomatei	rials,	adhesion and	friction, thermal	
	properties	of nanoma	teria	lsNanopart	ticles	: gold and silve	er, metal oxides:	
	silica, iro	n oxide and	alum	ina - synth	esisa	ndproperties.		
	UNIT-IV	:Electrical	prop	perties				
	Conducti	vity and F	Resist	ivity, Cla	ssific	ation of Mate	erials based on	
	Conducti	vity, magne	etic p	roperties,	elect	ronic propertie	es of materials.	
	Classifica	tion of m	agne	tic pheno	mena	a.Semiconducto	or materials –	
	classifica	tion-Ge, Si,	GaA	s, SiC, Ga	N, G	aP, CdS,PbS. 1	Identification of	

	materials as p and n -type semiconductor-Hall effect - quantum and
	anomalous, Hall voltage - interpretation of charge carrier density.
	Applications of semiconductors: p-n junction as transistors and
	rectifiers, photovoltaic and photogalvanic cell.
	UNIT-V:Nano thin films, nanocomposites
	Application of nanoparticles in different fields. Core-
	shellnanoparticles-types,synthesis,andproperties.Nanocomposites-
	metal-,ceramic-andpolymer-matrixcomposites-applications.
	Characterization-SEM, TEM and AFM- principle,instrumentationand
	applications.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	 Publishers, 2016. Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Website and e-learning source	 http://xrayweb.chem.ou.edu/notes/symmetry.html. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
	atcomes (for Mapping with POs and PSOs)
Students will be abl	
_	ethods of fabricating nanostructures.
CO2: To relate the u	unique properties of nanomaterials to reduce dimensionality of the

material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5:To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

TV-1 0.1			EL	ECTROC	HEN	MISTRY	
Title of the Course							
Paper No.	Elective 1	ſΤ					
Category	Elective	Year	Ι	Credits	4	Course	
Curegory		Semester	I	Creares	-	Code	
Instructional	Lecture	Tutorial	L	ab Practi	ce	Т	Cotal
hours per week	4	1	<u> </u>	-			5
Prerequisites		owledge of				-4 :- 4	-£ 1t
Objectives of the course					ctrony	tes in terms (of conductance,
course		osphere, into			alact	rical double la	yer of different
	models.	arize the st	ructu	ie oi uie	CICCI	ricar double la	iyer or unferent
		re electrode	s het	ween curr	ent de	ensity and over	· notential
						ical reactions.	potential.
					ver v	voltages and its	s applications in
		lytical tech	nique	es.			
Course Outline	UNIT-I:	lonics:					
	Arrheniu	s theory -l	imita	tions, var	't H	off factor and	l its relation to
	colligative	e propertie	s. De	eviation fr	om	ideal behavior	. Ionic activity,
	mean ion	ic activity a	nd m	ean ionic	activ	ity coefficient-	concept of ionic
	strength,	Debye Hucl	kel th	eory of st	rong	electrolytes,act	tivity coefficient
	of strong	electrolytes	s Det	ermination	of a	activity coeffic	cient ion solvent
	and ion-io	on interact	ions.	Born equa	ition.	Debye-Huckel	Bjerrum model.
	Derivation	n of Debye	-Huc	kel limitir	ıg lav	w at appreciab	le concentration
		•		•		•	ytic conduction-
	Debye-H	ickel Onsag	ger tı	reatment of	f str	ong electrolyte	e-qualitative and
	quantitati	ve verificati	ion a	nd limitati	ons.	Evidence for ic	onic atmosphere.
	Ion associ	iation and tr	riple i	on format	ions.		
	UNIT-II:	Electrode-	electi	rolyte inte	rfac	e:	
	Interfacia	l phenome	ena	-Evidence	es f	or electrical	double layer,
	polarizabl	le and non-	polar	izable inte	rface	es, Electrocapil	lary phenomena
	- Lippm	ann equa	tion	electro	capil	lary curves.	Electro-kinetic
	phenome	na electro	o-osn	nosis, e	lectro	ophoresis, s	treaming and
		-					es. Structure of
					•	-	Stern models of
		•		-	tial	and potential	at zero charge.
	Application	ons and lim	itatio	ns.			

UNIT-III: Electrodics of Elementary Electrode Reactions:

Behavior of electrodes: Standard electrodes and electrodes at equilibrium. Anodic and Cathodic currents, condition for the discharge of ions. Nernst equation, polarizable and non-polarizable electrodes. Model of three electrode system, over potential. Rate of electro chemical reactions: Rates of simple elementary reactions. Butler-Volmer equation-significance of exchange current density, net current density and symmetry factor. Low and high field approximations. symmetry factor and transfer coefficient Tafel equations and Tafel plots.

UNIT-IV: Electrodics of Multistep Multi Electron System:

Rates of multi-step electrode reactions, Butler - Volmer equation for a multi-step reaction. Rate determining step, electrode polarization and depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I³⁻, Fe²⁺, and dissolution of Fe to Fe²⁺. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams.

UNIT-V:Concentration Polarization, Batteries and Fuel cells:

Modes of Transport of electro active species - Diffusion, migration and hydrodynamic modes. Role of supporting electrolytes. Polarography-principle and applications. Principle of square wave polarography. Cyclic voltammetry- anodic and cathodic stripping voltammetry and differential pulse voltammetry. Sodium and lithium-ion batteries and redox flow batteries. Mechanism of charge storage: conversion and alloying. Capacitors- mechanism of energy storage, charging at constant current and constant voltage. Energy production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high temperature fuel cells.

Extended
Professional
Component (is a part of internal component only,
Not to be included

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

	T
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. D. R. Crow, Principles and applications of electrochemistry,
Text	4thedition, Chapman & Hall/CRC, 2014.
	2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of
	chemical transformations Macmillan India Ltd., New Delhi, 2011.
	3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt.,
	Ltd., New Delhi, 2008.
	4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan
	and P.S. Raghavan, Electrochemistry-Principles and applications,
	S. Viswanathan Printers, Chennai, 2007.
	5. Joseph Wang, Analytical Electrochemistry, 2 nd edition, Wiley, 2004.
Reference Books	1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008.
	2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro
	chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
	3. Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New
	York, 2010.
	4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
	5. K.L. Kapoor, A Text book of Physical chemistry, volume-3,
	Macmillan, 2001.
Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activitycoefficient of electrolytes

CO5:To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MOLECULAR SPECTROSCOPY									
Course										
Paper No.	Elective 1		-	T						
Category	Elective	Year	I	Credits	4	Course Code				
Instructional	Lecture	Semester Tutorial		 Lab Practi	<u> </u>		otal ·			
hours per week	4	1	_			1	5			
Prerequisites	Basic kno	owledge of	spect	troscopy						
Objectives of the	To understand the influence of rotation and vibrations on the spectra of									
course	the polyatomic molecules.									
	_	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR								
	1 -			•		n Mass spectro				
	_						iple to interpret			
						lectronic transi IR spectra in to	erms of splitting			
							such as COSY,			
		, NOESY.								
		out the strechniques.	ructu	ral elucida	ation	of molecules	using different			
Course Outline		Rotational a	and l	Raman Sn	ectro	scopy:				
				_			es. Intensities of			
	rotational	spectral l	ines,	effect of	f iso	topic substitu	tion. Non-rigid			
	rotators.	Classical the	eory	of the Ram	nan ef	fect, polarizab	ility as a tensor,			
	polarizab	lity ellipso	ids,	quantum	theor	y of the Ram	an effect, Pure			
	rotational	Raman sp	ectra	a of linea	r and	l asymmetric	top molecules,			
	Stokes a	nd anti-Sto	okes	lines. Vi	bratio	onal Raman s	spectra, Raman			
	activity of	f vibrations,	rule	of mutual	exclu	ision, rotationa	al fine structure-			
	O and S b	oranches, Po	lariz	ation of Ra	aman	scattered photo	ons.			
	UNIT-II:	Vibrationa	l Sp	ectroscopy	7:					
	Vibration	s of mole	ecule	s, harmo	nic a	and anharmoi	nic oscillators-			
	vibrationa	al energy ex	pres	sion, energ	gy le	vel diagram, v	ribrational wave			
	functions	and their	syn	nmetry, se	electio	on rules, expi	ression for the			
	energies o	of spectral l	lines,	computat	ion o	f intensities, h	ot bands, effect			
	of isotopi	c substituti	on.D	iatomic vi	bratir	ng rotor, vibra	tional-rotational			
	spectra of	diatomic n	noled	cules, P, R	bran	ches, breakdov	wn of the Born-			
	Oppenhei	mer approx	xima	tion.Vibrat	tions	of polyatomi	c molecules -			
	symmetry	properties,	ove	rtone and	comb	ination freque	ncies. Influence			
	of rotation	n on vibra	tiona	al spectra	of po	olyatomic mol	ecule, P, Q, R			
	branches,	parallel and	d per	pendicular	vibra	ations of linear	and symmetric			
	top molec	ules.								
				-						

UNIT-III:Electronic spectroscopy:

Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles, photoelectron spectra of simple molecules, Xray photoelectron spectroscopy (XPS). Lasers: Laser action, population inversion, properties of laser radiation, examples of simple laser systems.

UNIT-IV: NMR and Mass Spectrometry:

Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities.

13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction to ³¹P, ¹⁹F NMR.Mass Spectrometry: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum.

UNIT-V:ESR and Mossbauer Spectroscopy:

ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples. Structural elucidation of organic

	compounds by combined spectral techniques. Principle of Mossbauer
	spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole
	splitting, magnetic interactions. Applications: Mossbauer spectra of
	high and low-spin Fe and Sn compounds.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, 6th Ed., John Wiley & Sons, New York, 2003. W. Kemp, Applications of Spectroscopy, English Language Book Society, 1987. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1992.
Reference Books	 P.W. Atkins and J. de Paula, <i>Physical Chemistry</i>, 7th Ed., Oxford University Press, Oxford, 2002. I. N. Levine, <i>Molecular Spectroscopy</i>, John Wiley & Sons, New York, 1974. A. Rahman, <i>Nuclear Magnetic Resonance-Basic Principles</i>, Springer-Verlag, New York,1986. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordination Compounds</i>, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic Resonance</i>; Wiley Interscience, 1994.
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
C t : 0	2. https://www.dighilat.iii/hptc//courses/video/104100122/L14.html

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P,

¹⁹FNMR and ESR spectroscopic techniques.

CO5:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopytechniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

SEMESTER-II

Title of the Course		ORGANIC R	EAC'	ГІОN MECH	ANIS	M-II		
Paper No.	Core IV			_		_	•	
Category	Core	Year Semester	I	Credits	4	Course Code		
Instructional	Lecture	Tutorial	Lab Practice Total					
hours per	4	1		-	<u>* </u>	5		
week								
Prerequisites		dge of organic c		•				
Objectives of the course		d the concept on the definition of the definitio		•	enzen	ioid, non-benze	enoid,	
the course		the mechanism			types	of organic read	ctions	
	with evidence				Jr			
		the applications						
		he reactivity betw thetic routes for s		1		1		
Course Outline		nination and Fre	•					
		E1cB mechanism					on of	
	the double b	oond: Hoffmann	and	Saytzeff rul	es. R	eactivity: Effe	ct of	
	substrate, atta	acking bases, lea	ving	group and me	edium	. Stereochemist	try of	
	eliminations i	n acyclic and cyc	elic sy	stems, pyroly	tic eli	mination. Long	lived	
	and short-liv	ved radicals –	Proc	luction of ra	adical	s by thermal	and	
	photochemica	l reactions, Detec	ction a	and stability of	radic	als, characterist	ics of	
	free radical re	eactions and free	radica	al, Reactions of	of radi	cals, polymeriz	ation,	
	addition, halo	ogenations, aroma	atic s	ubstitutions, r	earran	gements. React	tivity:	
	Reactivity or	aliphatic, aron	natic	substrates, re	eactivi	ty in the atta	cking	
	radical, effect	of solvent.						
	UNIT-II: Ox	idation and Red	uctio	n Reactions an	nd Me	echanisms:		
	Direct electro	on transfer, hydri	ide tr	ansfer, hydrog	gen tra	ansfer, displace	ement,	
	addition-elim	ination, oxidative	and	reductive coup	oling r	eactions. Mech	anism	
	of oxidation	reactions: Dehye	droge	nation by qui	nones	, selenium dio	xides,	
	ferricyanide,	mercuric acetate	lead	tetraacetate,	perma	anganate, mang	ganese	
	dioxide, osmi	um tetroxide, oxi	datior	of saturated h	nydroc	carbons, alkyl g	roups,	
	alcohols, hali	des and amines.	React	ions involving	g clea	vage of C-C bo	onds -	
	cleavage of	double bonds,	oxida	tive decarbox	ylatio	n, allylic oxid	lation,	
	oxidation by	chromium triox	ide-p	yridine, DMS	O-Oxa	alyl chloride (S	Swern	
	oxidation) an	d Corey-Kim o	xidati	on, dimethyl	sulph	noxide- dicyclo	hexyl	
	carbodiimide	(DMSO-DCCD)	. Me	chanism of re	eduction	on reactions: V	Wolff-	

Kishner, Clemmenson, Rosenmund, reduction with Trialkyl and triphenyltin hydrides, McFadyen-Steven's reduction, Homogeneous hydrogenation, Hydroboration with cyclic systems, MPV and Bouveault-Blanc reduction.

UNIT-III:Rearrangements:

Rearrangements to electron deficient carbon: Pinacol-pinacolone and semipinacolone rearrangements -applications and stereochemistry, WagnerMeerwein, Demjanov, Dienone-phenol, Baker-Venkataraman, Benzilic acid
and Wolff rearrangements.Rearrangements to electron deficient nitrogen:
Hofmann, Curtius, Schmidt, Lossen, Beckmann and abnormal Beckmann
rearrangements. Rearrangements to electron deficient oxygen: BaeyerVilliger oxidation and Dakin rearrangements. Rearrangements to electron rich
atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig
rearrangements.Fries and Photo Fries rearrangement.Intramolecular
rearrangements — Claisen, abnormal Claisen, Cope, oxy-Cope Benzidine
rearrangements.

UNIT-IV: Addition to Carbon Multiple Bonds and Mechanisms:

(a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig reaction, Prinsreaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates –Stobbe reactions. Hydrolysis of esters and amides, ammonolysis ofesters.

UNIT-V:Reagents and Modern Synthetic Reactions:

Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH₃CN), *meta*-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu₃SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), *N*-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO),

	Phenyltrimethylammonium tribromide (PTAB).Diazomethane and Zn-Cu,
	Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ , NaIO ₄ ,
	Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC),
	Meisenheimer complex.Suzuki coupling, Heck reaction, Negishi reaction,
	Baylis-Hillman reaction.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is	(To be discussed during the Tutorial hours)
a part of	
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	Warrelada a Darklam adaine Analytical aktitus Darkaria ad Computer a
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
Course	
Recommended Text	1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed.,
Text	John-Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc.,1959.
	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New Age
	International Publishers, 2015.
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn.,Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee <i>Organic Chemistry</i> ,
Deference	7 th edn., Pearson Education,2010. 1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill
Reference Books	1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill International Editionn,1987.
DOORS	2. L. F. Fieser and M. Fieser, <i>Organic Chemistry</i> , Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
	Rinehart and Winston Inc.,1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-
	Wiley,2010.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	2. https://www.organic-chemistry.org/
Course I comine	y Outcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5:To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

 $3-Strong,\,2-Medium,\,1-Low$

Title of the			PHY	SICAL C	HEN	ISTRY-I				
Course Paper No.	Core V									
Category	Core	Year	Ι	Credits	4	Course				
		Semester	II	. 0100208	-	Code				
Instructional	Lecture	Tutorial	L	ab Practi	ce	r	Fotal			
hours per week	4	1		-			5			
Prerequisites		ncepts Of I					• • • • •			
Objectives of the course	To recall the fundamentals of thermodynamics and the composition of partial molar quantities.									
Course	_	To understand the classical and statistical approach of the functions								
							Fermi-Dirac and			
	Bose-Ein									
		late the th namic para			ction	rates for th	e evaluation of			
	_	the mechan			s of r	eactions.				
Course Outline		Classical T								
	Partial m	olar proper	ties-0	Chemical	poter	ntial, Gibb's-L	Ouhem equation-			
	binary an	d ternary s	ysten	ns. Determ	ninati	on of partial	molar quantities.			
	Thermod	ynamics of	real	gases - F	ugac	ity- determina	ation of fugacity			
	bygraphic	cal and equa	ation	of state m	etho	ds-dependence	e of temperature,			
	pressure	and compo	ositio	n. Thermo	odyna	amics of idea	al and non-ideal			
	binary m	xtures, Dul	nem ·	- Margulus	s equ	ation applicati	ions of ideal and			
	non-ideal	mixtures.	Activ	rity and ac	ctivity	y coefficients-	standard states -			
	determina	tion-vapou	r pres	ssure,EMF	andf	reezing point	methods.			
	UNIT-II	Statistical	ther	nodynam	ics:					
	Introduct	on of statis	stical	thermody	nami	cs concepts of	f thermodynamic			
	and math	ematical pr	obabi	ilities-disti	ibuti	on of distingu	ishable and non-			
	distinguis	hable parti	cles.	Assembli	es, e	nsembles, car	nonical particles.			
	Maxwell	- Boltzm	ann,	Fermi D	Dirac	& Bose-Ein	stein Statistics-			
	comparis	on and a	applio	cations.	Partit	ion function	s-evaluation of			
	translatio	nal, vibrat	ional	and ro	otatio	nal partition	functions for			
	monoator	nic, diaton	nic a	nd polyate	omic	ideal gases.	Thermodynamic			
	functions	in terms	of p	artition fu	ınctio	ns-calculation	of equilibrium			
	constants						perties: pressure,			
	internal			oy, enthal	_		ction, Helmholtz			
	function	residual e	ntrop	y, equilib	rium	constants a	nd equipartition			
	principle.	Heat capac	ity o	f mono a	nd di	atomic gases	s-ortho and para			
	hydrogen	. Heat capa	city o	of solids-E	instei	n and Debye r	nodels.			

UNIT-III:Irreversible Thermodynamics:

Theories of conservation of mass and energyentropy production in open systems by heat, matter and current flow, force and flux concepts. On sager theory-validity and verification- On sager reciprocal relationships. Electro kinetic and thermo mechanical effects-Application of irreversible thermodynamics to biological systems.

UNIT-IV: Kinetics of Reactions:

Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time andtrue order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.

UNIT-V:Kinetics of complex and fast reactions:

Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of $\rm H_2-Cl_2\&~H_2-Br_2$ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Polycondensation.

Extended Professional Component

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course Recommended

Text

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

- 1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986.
- 2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A.BenjaminPublishers, California, 1972.

3. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995.
4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.
5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011.
D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
2.R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
Publishing, Pvt. Ltd., New Delhi, 1990.
3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry,
Macmillan Publishers, New York, 1974
4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom
Press,1996.
5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
1. https://nptel.ac.in/courses/104/103/104103112/
2. https://bit.ly/3tL3GdN

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5:To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	INORGANIC CHEMISTRY PRACTICAL									
Course	G T/T									
Paper No.	Core VI	T 7	1 -	0 114						
Category	Core	Year	I	Credits	4	Course				
T	T 4	Semester	II	. l. D 4*	<u> </u>	Code	D. 4 . 1			
Instructional	Lecture	Tutorial	L	∡ab Practi	ce	1	<u>Fotal</u>			
hours per week	Pogia mui	1		4	J		<u>5</u>			
Prerequisites Objectives of the						alitative analy				
Objectives of the course	To understand and enhance the visual observation as an analytical tool for the quantitative estimation of ions.									
Course	To recall the principle and theory in preparing standard solutions.									
		To train the students for improving their skill in estimating the amount								
		urately pr					ating the amount			
		• •					ccurately without			
	using inst		пъ, р	icsciit iii ti	ic gi	ven solution ac	curatery without			
	_		ount c	of ions, pre	sent	in a binary mix	cture accurately.			
Course Outline							mixture of four			
		-				-	ations.Cations to			
	be tested.	8								
	Group-I	: W, 7	Tl and	l Pb.						
	Group-II	: Se, 7	Γe, M	lo, Cu, Bi	and C	Cd.				
	Group-III		Ce, Th	n, Zr, V, C	r, Fe,	Ti and U.				
	Group-IV			o and Mn.						
	Group-V									
	Group-V									
			of	metal cor	nple	kes: Preparation	on of inorganic			
	complexe		1 .	/	T\ 1	1 .				
	_	tion of trist								
	_	tion of pota tion of tetra								
	_	ition of Rei			11) St	прпасе				
					r(I) c	hloridedihydra	te.			
	_					e diaquachroma				
	_	tion of sod				-	()			
		tion of hex				, ,				
	_	Complexo								
	1. Estima	tion of zinc	, nick	kel, magne	sium	, and calcium.				
		tion of mixt king agents		of metal io	ns-pI	I control, mask	king and			
	3. Determ	ination of o	calciu	ım and lea	d in a	n mixture (pH o	control).			
	4. Determ	ination of 1	nang	anese in th	e pre	sence of iron.				
	5. Determ	ination of 1	nicke	l in the pre	senc	e of iron.				
Extended	Questions	related to	the al	ove topic	s, fro	m various com	petitive			
Professional							/TNPSC others			
Component (is a	to be solv	ed								
part of internal	(To be dis	(To be discussed during the Tutorial hours)								
component only,										
Not to be included										
in the external										
examination										

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
	3rded.,The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i> ; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental <i>Inorganic Chemistry</i> ; Cambridge
	University Press, 1954.

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and pot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5:To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		MEDICI	NAL C	HEMISTRY						
Paper No.	Elective III									
Category	Elective	Year	I	Credits	4	Course				
•		Semester	II			Code				
Instructional	Lecture	Tutorial		Lab Practice		Total				
hours per week	4	1		-		5				
Prerequisites 6.1	1	lge of medicinal o			C 1					
Objectives of the course	materials.	e chemistry behi	nd the	e development	of pl	narmaceutic	cal			
Course		edge on mechanis	m and a	action of drugs.						
	_	the need of antibi		_	•					
		with the mode of	action	of diabetic agen	ts and	d treatment	of			
	diabetes.	1 1 1 2	с .							
Course Outline	•	d apply the action duction to recept		ous antibiotics.						
Course Outilile		_								
	Introduction,	targets, Agonist	, anta	gonist, partial	agon	ist.Receptor	rs,			
	Receptor type	s, Theories of Dro	ıg – re	ceptor interaction	n, Dru	ig synergisi	m,			
	Drug resistanc	e, physicochemica	ıl factor	s influencing dru	g acti	on.				
	UNIT-II:Anti	biotics:								
	Introduction, Targets of antibiotics action, classification of antibiotics,									
	enzyme-based	mechanism of a	ction, S	SAR of penicllin	s and	l tetracyclir	ns,			
	,	cation of penici		-		·				
	antibiotic thera	•		1 1						
		ihypertensive ag	ents an	d diuretics:						
		of cardiovascula			ı to	hypertension	on,			
		s, classification of				• •				
		f action of diu	• •							
		i action of did	ictics,	Turosemiae, 11	yuroc	moroumazio	лс,			
	Amiloride.									
		iviraland Antiba								
	Classification	of antiviralagen	ts, Med	chanism of acti	ion -	Chloroqui	ine			
	Phosphate,	Amodiaqu	ine	hydrochlo	oride	a	ınd			
	Pyrimethamine	e.Antibacterial:Cla	ssificat	tion and mech	hanisr	n of actio	n-			
	Sulphanilamide, Sulphapyridine, Sulphadiazine and Sulphisoxazole.									
	UNIT-V: Analgesics, Antipyretics and Anti-inflammatory									
	Drugs:Introduction, Mechanism of inflammation, classification and									
	mechanism of action and paracetamol, Ibuprofen, Diclofenac, naproxen,									
	indomethacin,	ndomethacin, phenylbutazone and meperidine. Medicinal Chemistry of								
	Antidiabetic Agents Introduction, Types of diabetics, Drugs used for the									
	7 Indianactic F		, <u>ryp</u> c	or diabotics, I	-1450	3504 101 tl				

	treatment, chemical classification, Mechanism of action, Treatment of
	diabetic mellitus. Chemistry of insulin, sulfonyl urea.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry, Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. JayashreeGhosh,AtextbookofPharmaceuticalChemistry,S.ChandandCo. Ltd,1999,1999 edn. O.LeRoy,Natural andsyntheticorganicmedicinal compounds,Ealemi,1976. S.S.AshutoshKar,MedicinalChemistry, WileyEasternLimited, NewDelhi,1993,New edn.
Reference Books	 Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. WilsonandGisvold'sTextbookofOrganicMedicinalandPharmaceuticalChe mistry,John M.BealeJrandJohnM. Block, Wolters Kluwer, 2011,12thedn. P.Parimoo,ATextbookofMedicalChemistry,NewDelhi:CBSPublishers.19 95. S.Ramakrishnan, K.G.PrasannanandR.Rajan,TextbookofMedicalBiochemistry,Hyderab ad: OrientLongman.3rd edition,2001.
Website and e-learning source	https://www.ncbi.nlm.nih.gov/books/NBK482447/ https://training.seer.cancer.gov/treatment/chemotherapy/types.html https://www.classcentral.com/course/swayam-medicinal-chemistry- 12908 treatment

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecularlevel.

CO5:To identify different targets for the development of new drugs for the treatment of infectious and GIT.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	GREEN CHEMISTRY								
Course	Elective l	TT							
Paper No. Category	Elective 1 Elective	Year	Ι	Credits	4	Course			
Category	Liective	Semester	II	Credits	4	Code			
Instructional	Lecture	Tutorial		Lab Practi	ce		otal		
hours per week	4	1		-			5		
Prerequisites	Basic kno	owledge of	gene						
Objectives of the course	To discuss the principles of green chemistry. To propose green solutions for chemical energy storage and conversion. Propose green solutions for industrial production of Petroleum and Petrochemicals. Propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries. Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals.								
Course Outline	Propose green solutions for industrial production of Surfactants,								
T		and Applica			<u> </u>		,•,•		
Extended	Questions	related to t	ne al	pove topics	s, fror	n various comp	petitive		

Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green
Text	Chemistry, Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall,1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi, 2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory
	and Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker,
	2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green
	Chemistry, American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. https://www.studyorgo.com/summary.php

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organicsynthesis.

CO5: To design and synthesize new organic compounds by green methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	BIO-INORGANIC CHEMISTRY							
Paper No.	Elective 1	IV						
Category	Elective	Year	I	Credits	4	Course		
		Semester	II			Code		
Instructional	Lecture 4	Tutorial 1	L	ab Practi	ce	1	Cotal	
hours per week Prerequisites	•	owledge of	chem	istrv			5	
Objectives of the		stand the rol		•	ents.			
course			_	_		of iron, sulpur		
	_	the toxicity						
		nowledge o s on various		-				
Course Outline		Essential to			es pr	орегиев.		
	Selective	transport a	nd st	orage of n	netal	ions: Ferritin,	Transferrin and	
	sidorphor	es; Sodium	n an	d potassiı	ım	transport, Calc	cium signalling	
	proteins.N	Metalloenzy	mes,	Zinc	enz	ymes–carboxy _I	peptidase and	
	carbonic	anhydrase. l	rone	nzymes–ca	atalas	se, peroxidase.	Copperenzymes	
	- supero	xide dismı	ıtase,	Plastocy	anin	, Ceruloplasm	in, Tyrosinase.	
	•	es - Vitamir			es.			
	UNIT-II:	Transport	Prot	eins:				
	Oxygen	carriers-He	emog	lobin and	d n	nyoglobin -	Structure and	
	oxygenati	onBohr Eff	ect.	Binding of	f CO	, NO, CN- to	Myoglobin and	
	Hemoglo	bin.Biologic	cal 1	redox sys	stem	Cytochrome	s-Classification,	
	cytochron	ne a, b and	c. Cy	tochrome	P-45	50. Non-heme	oxygen carriers-	
	Hemeryth	nrin and her	nocy	anin. Iron	-sulp	ohur proteins- l	Rubredoxin and	
		n- Structure			ion.			
		:Nitrogen						
		• •		Ü	Ŭ	C	ns. Nitrogenase	
				_			rty - Dinitrogen	
	1			•		J	nitrogen fixation	
	via nitride formation and reduction of dinitrogen to ammonia.							
		thesis,photo	•	m-I a	nd	photosystem	n-II-chlorophylls	
		and function						
		Metals in n						
	Metal To	oxicity of	H	g, Cd,	Zn,	Pb, As,	Sb.Therapeutic	
	Compoun	ds,Vanadiu	m-Ba	sed Diab	etes	Drugs; Platin	num-Containing	

Anticancer Agents, Chelation , therapy, Cancer treatment. Diagnostic
Agents, Technetium Imaging Agents; Gadolinium MRI Imaging
Agents, emperature and critical magnetic Field.
UNIT-V:Enzymes :
Introduction and properties -nomenclature and classification. Enzyme
kinetics, free energy of activation and the effects of catalysis. Michelis
- Menton equation - Effect of pH, temperature on enzyme reactions.
Factors contributing to the efficiency of enzyme.

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams—The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001.
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological
	processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-
	<u>5th-edition-d161563417.html</u>

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5:Learn about the nitrogen fixation and photosynthetic mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the			M	ATERIAI	SC	IENCE			
Course Paper No.	Elective 1	\mathbf{v}							
Category	Elective	Year	Ι	Credits	4	Course			
		Semester	II			Code			
Instructional	Lecture	Tutorial	L	ab Practi	ce	7	Total		
hours per week	4	1		-			5		
Prerequisites Objectives of the		wledge of				•	ada and V	#0¥1	
Objectives of the course	scattering		crys	tai struct	ure,	growth meth	ious and A-	-ray	
	To explain the optical, dielectric and diffusion properties of crystals. To recognize the basis of semiconductors, superconductivity materials and magnets. To study the synthesis, classification and applications of nanomaterials. To learn about the importance of materials used for renewable energy conversion.								
Course Outline	UNIT-1:0	Crystallogr	aphy	7:					
	symmetry	- unit ce	ll an	d Miller	indic	es -crystal sy	stems - Bra	vais	
	lattices -	point gro	ups	and space	gro	oups - X-ray	diffraction-L	Laue	
	equations	-Bragg's l	aw-r	eciprocal	latti	ce and its	application	to	
	geometric	al crystall	ogra	phy. Crys	stal	structure-pow	der and sin	ngle	
	crystalap	olications. I	Electi	on charge	den	sity maps, neu	utron diffract	ion-	
	method a	nd applicati	ons.						
	UNIT-II	Crystal gr	owth	methods	:				
	Nucleation	on–equilibri	ium s	stability ar	nd me	etastable state.	Single cryst	al –	
	Low and	high tempe	eratu	re, solution	n gro	owth– Gel and	l sol-gel. Cry	/stal	
	growthme	ethods-nucle	eatio	n–equilibri	ium				
	stabilitya	ndmetastabl	lestat	e.Singlecr	ystal-	-Lowandhight	emperature,		
	solution	growth-	Gel	and sol-	gel.	Melt growth	n Bridgen	nan-	
	Stockbarg	ger,Czochra	lskin	nethods.Fl	uxtec	hnique,physic	alandchemica	al	
	vapourtra	nsport.Lore	entz	and pola	arizat	tion factor	- primary	and	
	secondary	extinction	s.						
	UNIT-III	:Properties	s of c	rystals:					
	Optical st	udies - Elec	trom	agnetic sp	ectru	m (qualitative)) refractive in	ıdex	
	- reflecta	ance – tra	nspai	ency, tra	nsluc	ency and op	acity. Types	of	
	luminesce	ence – phot	o-, e	lectro-, ar	nd in	jection lumine	escence, LED)s –	
	organic,	Inorganic	and	polymer	LE	D materials	- Application	ons.	
	Dielectric	studies- Po	olaris	ation - elec	etron	ic, ionic, orien	tation, and sp	pace	
	charge po	larisation. I	Effec	t of tempe	ratur	e. dielectric co	onstant, dielec	etric	

64 loss. Types of dielectric breakdown-intrinsic, thermal, discharge, electrochemical and defect breakdown. **UNIT-IV:Special Materials:** Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications.Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and gian magneto resistance. Ferro, ferri and antiferromagnetic materials-applications, magnetic parameters for recording applications. Ferro-, Piezo-, and pyro electric materials properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics-Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO₃. **UNIT-V:** Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dyesensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol. Questions related to the above topics, from various competitive Extended Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Knowledge, Problem solving, Analytical ability, Professional

Skills acquired from this course Recommended

Text

Competency, Professional Communication and Transferable skills.

- 1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.
- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
- 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

Reference Books 1. Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol

	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
	3. https://bit.ly/3QyVg2R

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectricmaterials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LEDuses, structures and synthesis.

CO5:To design and develop new materials with improved property for energy applications.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	SKILL ENHANCEMENT COURSE- I									
		INDUST	RIAI	L CHEMIST	'RV					
Paper No.	SEC-I	INDUST	МІЛІ		<u>K1</u>					
Category	SEC	Year	I	Credits	2	Course				
Instructional hours	Lastuma	Semester Tutorial	II	 Lab Practice		Code				
per week	Lecture 2	1 utoriai 1		Lab Fracuce	;	Total 3				
Prerequisites	Basic conce	pts of Industria	al che	emistry						
Objectives of the	Knowledge of important chemical and reagents used in chemical									
course	industries.									
	Understand the basic principle behind various mixtures used in chemical industries and their selection in respective applications.									
	Understand the safety and Hazardous criteria related to unit process.									
	Gain knowledge about fertilizer									
Course Outline	UNIT-I: Pri	inciples Of Che	emica	al Technolog	y					
						ogy – importance				
	of chemical	technology – c	classi	fication of te	chno	logical process –				
	designing ar	nd modeling of	chem	nical plants –	unit	process and unit				
	operations. Basic requirements of industrial reactors - choice and									
	selectivity of reactor - basic principles of homogeneous and									
	heterogeneo	us processes and	d reac	ctors with exa	mple	es.				
	UNIT-II:Raw Materials And Energy For Chemical Industry									
	Raw materia	ıls – Characteris	stics o	of raw materi	als aı	nd their resources				
	– methods or	f raw material c	once	ntration – inte	egral	utilization of raw				
	materials. E	Energy for che	mica	l industry –	pov	ver and fuels –				
	classification	n of fuels – o	coal	– fuel gases	s and	d liquid fuels –				
	petroleum –	cracking – che	mical	corrosion –	types	of corrosion and				
	preventive m	neasures.								
	UNIT-III:S	mall Scale Che	mica	l Industries						
	Electro-thern	nal and electro	o- ch	emical indus	tries:	electroplating –				
	surface coat	ting industries	– oi	ils, fats and	wax	xes – soaps and				
	detergents	 cosmetics. 	Mato	ch industries	s an	nd Fire Works:				
	Manufacture	of some in	ndust	rially impor	tant	chemicals like				
	potassium o	chlorate, potass	sium	nitrate, bar	ium	nitrate and red				
	phosphorous – metal powders.									
	UNIT-IV:L	arge Scale Che	mica	l Industries						
	Manufacturi	ng process – ra	w m	aterials – coi	npos	ition and uses of				
	products in I	Portland cement	t – ce	ramics – plas	tics,	synthetic fibres –				

	07
	synthetic rubber - fertilizers - insecticides and pesticides - photo
	film industries – commercial aspects of starting an industry
	UNIT-V:Safety Signs And Colours Used In Industries
	- Industrial Hazards and Accidents - Classification of Hazards -
	Physical, chemical Biological, Ergonomic and stress Hazards –
	Causes, prevention and control – case study on industrial accidents
	- Bhopal gas Tragedy - Heat stress - sources and control - Noise
	pollution in industry – sources and control.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course Recommended Text	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. Mukhlynov (ed.), Chemical Technology, Vol.1, Mir Publication,
	 Moscow, III edn., 1979. A. K. De, Environmental Chemistry, Wiley Eastern Ltd., II edn., Meerut 1989, Chs, 5 – 7. R.K. Goel, Process know-how and material of construction for Chemical Industries, S.B. Publ., Delhi, 1977.
	 4. B.N. Chakrabarthy, Industrial Chemistry, Oxford and IBH Publ., Now Delhi, 1984. 5. R. Norris Shreve and J.A. Brink, Jr. Chemical Process
	 Industries, IV edn., McGraw Hill, Tokyo, 1977. Industrial Safety and Environment – A.K. Gupta – University Science press, New Delhi.

SEMESTER-III

Title of the Course	ORGANIC SYNTHESIS AND PHOTOCHEMISTRY								
Paper No.	Core VII								
Category	Core	Year	II	Credits	4	Course			
		Semester	III			Code			
Instructional	Lecture	Tutorial	L	ab Practi	ce	Τ	Total Total		
hours per week	4	1		-			5		
Prerequisites		owledge of				C 1 1	1. 1.1		
Objectives of the course	To study organic sy To apply effect suc To learn to gain the	o understand the molecular complexity of carbon skeletons and the esence offunctional groups and their relative positions. It is study various synthetically important reagents for any successful ganic synthesis. It is apply disconnection approach and identifying suitable synthons to fect successful organic synthesis. It is be learn the concepts of pericyclic reaction mechanisms. It is gain the knowledge of photochemical organic reactions.							
Course Outline	UNIT-I:P	lanning an	Orga	anic Syntl	nesis	andControl el	lements:		
	Prelimina	y Plannin	g –	knowns	and	unknowns of	f the synthetic		
	systemstu	died, analy	/sis	of the c	ompl	ex and inte	rrelated carbon		
	frameworl	k into simpl	e rati	onalprecui	rsors,	alternate syntl	hetic routes, key		
	intermedia	intermediates that wouldbe formed, available starting materials and							
	resulting	resulting yield of alternativemethods. Linear Vs convergent							
	synthesis.	synthesis.synthesis based on umpolung concepts of Seeback, Control							
	elements:	Regiospec	ific c	control ele	ement	ts and stereo	specific control		
	elements.								
	UNIT-II:	Organic S	ynthe	tic Metho	dolog	gy: Retrosynt	hetic analysis:		
	Alternate	synthetic r	outes	. Synthesi	s of o	organic mono a	and bifunctional		
	compound	ds via dis	sconn	ection ap	proac	ch. Protection	of hydroxyl,		
	carboxyl,	carbonyl,	thiol	and amino	o gro	ups. Illustratio	on of protection		
	and depr	otection in	synt	hesis. Use	e of	protective gro	oups, activating		
	groups,	and bridgi	ng el	ements.	Funct	ional group	alterations and		
	transposit	ion.							
	UNIT-III	:Pericyclic	Read	ctions:					
	Woodwar	d Hoffman	n Rul	les, The M	Iobiu	s and Huckel	concept, FMO,		
	PMO n	nethod an	d co	orrelation	dia	grams. Cycl	loaddition and		
	retrocyclo	addition re	actior	ns; [2+2],	[2+4]	, [4+4, Cation	nic, anionic, and		
	1	· ·			-		lectrocyclization s and trienes.		
					<u> </u>		_		

Sigmatropic rearrangements: (1,3), (1,5), (3,3) and (5,5)-carbon migrations, degenerate rearrangements. Ionic sigmatropic rearrangements. transfer reactions. Regioselectivity, Group stereoselectivity and periselectivity in pericyclic reactions. **UNIT-IV:Organic Photochemistry-I:** Photochemical excitation: Experimental techniques; electronic transitions; Jablonskii diagrams; intersystem crossings; energy transfer processes; Stern Volmer equation. Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi reactions; **UNIT-V:Organic Photochemistry-II:** Photochemistry of α,β -unsaturated ketones; cis-trans isomerisation. Photon energy transfer reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; photostationery state; di-π-methane rearrangement; Reaction of conjugated cyclohexadienone to 3,4-diphenyl phenols; Barton's reactions. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Knowledge, Problem solving, Analytical ability, Professional Skills acquired from this course Competency, Professional Communication and Transferable skills. Recommended F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Text Tata McGraw-Hill, New York, 2003. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., 2. John-Wiley and sons, 2007. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel 3. publishing house, 1990. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition, 2016. M. B. Smith, Organic Synthesis 3rd edn, McGraw Hill International 5. Edition, 2011. Reference Books Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974. 1. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great Britain, 2004. 3. W. Caruthers, Some Modern Methods of Organic Synthesis 4thedn,

	Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,
	1972.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic
	Reactions, New Age International Publishers, New Delhi, 2012.
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf
e-learning source	

Students will be able:

CO1:To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2:To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3:To implement the synthetic strategies in the preparation of various organic compounds.

CO4:To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5:To design and synthesize novel organic compounds with the methodologies learnt during the course.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	COORDINATION CHEMISTRY – I							
Course	G VIII	т						
Paper No.	Core VII Core	1 Year	II	Credits	4	Course	1	
Category	Core	Semester	III	Credits	4	Code		
Instructional	Lecture	Tutorial	Lab Practice			otal		
hours per week	4	1		-		5		
Prerequisites		owledge of						
Objectives of the	To gain insights into the modern theories of bonding in coordination							
course	compounds.							
	To learn various methods to determine the stability constants of complexes.							
						on diagrams ar	_	
				U .		in the complex		
		ofreactions			and	electron transfe	er mechanistic	
	_			-	al an	d square planar	complexes.	
Course Outline	UNIT-I:	Modern the	ories	of coordi	natio	on compounds:	-	
	Crystal fi	eld theory -	splitt	ing of d or	rbital	s in octahedral,	tetrahedral and	
	square pl	anar symm	etries	- measur	emen	nt of 10Dq - fa	actors affecting	
	10Dq - spectrochemical series - crystal field stabilisation energy for							
	high spin and low spin complexes- evidences for crystal field splitting -							
	site selections in spinels and antispinels - Jahn Teller distortions and its							
	consequences.Molecular Orbital Theory and energy level diagrams							
	1			,	U	a and pi bonding	g in octahedral,	
		anar and teti		•				
	UNIT-II:	Spectral ch	ıarac	teristics o	f con	nplexes:		
	Term sta	tes for d i	ons -	characte	ristic	s of d-d transi	tions - charge	
	transfer	spectra -	select	ion rules	for	electronic sp	ectra - Orgel	
	correlatio	n diagram	s -	Sugano-T	anab	e energy leve	el diagrams -	
	nephelaux	xetic series	- F	Racha par	amet	er and calcula	tion of inter-	
	electronic	repulsion p	oaram	eter.				
	UNIT-III	Stability a	and M	Iagnetic p	rope	erty of the com	plexes:	
	Stability	of comple	exes:	Factors a	affect	ing stability of	of complexes,	
	Thermody	ynamic asp	ects o	of complex	x for	mation, Stepwi	se and overall	
	formation constants, Stability correlations, statistical factors and							
	chelate effect, Determination of stability constant and composition of							
	the com	plexes: Fo	rmati	on curve	s ar	nd Bjerrum's	half method,	

Potentiometric method, Spectrophotometric method, Ion exchange method, Polorographic method and Continuous variation method (Job's method)Magnetic property of complexes: Spin-orbit coupling, effect of spin-orbit coupling on magnetic moments, quenching of orbital magnetic moments. UNIT-IV: Kinetics and mechanisms of substitution reactions of

octahedral and square planar complexes:

Inert and Labile complexes; Associative, Dissociative and SNCB mechanistic pathways for substitution reactions; acid and base hydrolysis of octahedral complexes; Classification of metal ions based on the rate of water replacement reaction and their correlation to Crystal Field Activation Energy; Substitution reactions in square planar complexes: Trans effect, theories of trans effect and applications of trans effect in synthesis of square planar compounds; Kurnakov test.

UNIT-V:Electron Transfer reactions in octahedral complexes:

Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner sphere electron transfer reactions. Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications.

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry - Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006
- 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008
- 3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
- 4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
- 5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.

Reference Books

1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders

	Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L.
	Guas, John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman
	and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/

Students will be able:

CO1:Understand and comprehend various theories of coordination compounds.

CO2:Understand the spectroscopic and magnetic properties of coordination complexes.

CO3:Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4:Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5:Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the Course		PHYS	ICAI	CHEMI	STR	Y PRACTI	CA	L	
Paper No.	CoreIX								
Category	Core								
ourogor,	0010	Semester	III	0100108	-	Code			
Instructional	Lecture			ab Practi	re	0040	T	otal	
hours per week	Lecture	1		A I Tacu				5tai 5	
Prerequisites	Rogio kne	owledge of	nhvei	ical chami	cter			<u> </u>	
Objectives of the						nativity av	aori	manta through	
course	To understand the principle of conductivity experiments through conductometric titrations.								
Course				f the reac	tion	temperatur	e c	oefficient, and	
						-		do first order	
	kinetics.	chergy of	ı uic	reaction	Оy	ionowing p	JSCU	do msi order	
		ruct the nh	98e (liagram o	f two	o componer	nt c	ystem forming	
								peratures and	
	compositi	_	SOH	and m	u 16	3 catecate	tCII	iperatures and	
			etics (of adsorpti	ດາ ດ	f oxalic acid	on	charcoal	
								en ion, charge	
					_	•	_	computational	
	calculatio			iani ven b	эрччч		101	comparationar	
Course Outline		Conductivity	Expe	eriments					
Course outline		•	-		ducts	ance of a str	ona	electrolyte &	
		erification of				ance or a sur	ong	electrolyte &	
						w & Deterr	ning	ntion of pKa of	
		ak acid.	siwa.	ia s Dilair	OII La	iw & Deterr	111116	mon or pixa or	
			Cohlr	ausch's La	w fo	r weak elect	rols	rtes	
						ngly soluble	•		
				•	-	eak acid vs			
		pitation titra					ı ıu	011).	
	UNIT-II:		<i>a</i> t10115	(mixture	OI IIu	naes omy).			
			e of	acid byd	rolve	is of an es	ter	determine the	
								energy of the	
	react			and a	130 (ine activation	OII	chergy of the	
			s of	the reaction	on he	etween acet	one	and iodine in	
	_							the order with	
		ect to iodine	•		uiou	and determ	1110	the order with	
		: Phase diag							
		_		ram for a	simn	le binary sys	sten	1	
		alene-phena	_		~Р			_	
		henone- di							
	Adsorption	-							
	Adsorption of oxalic acid on charcoal & determination of surface area (Freundlich isotherm only).								
Extended	<u> </u>		•		, froi	n various co	mn	etitive	
Professional	~			-			-	TNPSC others	
Component						utorial hour			
Skills acquired						ability, Prof		onal	
from this course				-		n and Trans			
Recommended	*	_ ·						Chemistry,	

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To scientifically plan and perform all the experiments.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	co i o mapping (course in ticulation matrix)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO 1	S	S	S	S	M	S	S	S	S	M	
CO 2	M	S	S	S	S	M	S	S	S	S	
CO 3	S	S	M	S	S	S	S	M	S	S	
CO 4	M	S	S	S	S	M	S	S	S	S	
CO 5	M	S	M	S	S	M	S	M	S	S	

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	I	PHARMOO	COGI	NOSY AN	D Pl	НҮТОСНЕМ	IISTRY
Paper No.	Elective '	V					
Category	Elective	Year	II	Credits	4	Course	
		Semester	III			Code	
Instructional	Lecture	Tutorial	L	ab Practi	ce	7	Fotal
hours per week	4	1		-			5
Prerequisites		owledge of			1	1 , 1, 1 ,	1.0 1
Objectives of the course		op the know ological use:	_	e of natura	I pro	ducts, biologic	cal functions and
Course		_		primary a	nd se	econdary meta	bolites and their
	sources.	P III WIE	50 011	printer, w			
				pts of iso	latio	n methods an	nd separation of
		compounds		•			
	-		_		0,	cosides and m	ferent sampling
	technique		guit	ucillies of	. **	iio and un	referit sampling
Course Outline			osy	and Sta	ndar	dization of	Herbal drugs:
	Introducti	on, definit	ion,	developm	ent	classification	and Source of
	Drugs: B	iological, m	ninera	l, marine,	and 1	plant tissue cu	altures. Study of
	pharmaco	gnosticof a	crud	e drug. Bi	osyn	thesis: Shikim	nic acid pathway
	and ace	tate pathy	vay.	Systemat	tic	analysis of	Crude drugs.
	Standardization of Herbal drugs.WHO guidelines, Sampling of crude						
	drug, Me	thods of d	rug e	valuation.	Det	ermination of	foreign matter,
	moisture	Ash value	. Phy	tochemica	ıl in	vestigations-G	eneral chemical
	tests.						
	UNIT-II:	Extraction	Techi	niques: Ge	enera	l methods of	extraction, types
	– macer	ration, Dec	coctic	on, perco	latio	n, Immersion	n and soxhlet
	extraction	ı .					
	Advanced	l techniques	s- coi	unter curre	ent, s	team distillati	on, supercritical
	gases, sor	nication, Mi	cro w	aves assis	ted e	xtraction. Fact	tors affecting the
	choice of	extraction p	oroces	SS.			
	UNIT-III	:Drugs cor	ntaini	ng Terper	noids	and volatile	oils,Terpenoids:
						•	tion techniques,
			•			• •	Volatile Oils or
				-			of Volatile oils,
	_						ses. Pentacyclic
	_	•	nes; 1	taraxastero	ol: S	tructure and	pharmacological
	application	ns.					

UNIT-IV:Drugs containing alkaloids: Occurrence, function of alkaloids in plants, pharmaceutical applications. Isolation, Preliminary Qualitative tests and general properties. General methods of structural elucidation. Morphine, Reserpine, papaverine - chemical properties, structure and uses. UNIT-V:Plant Glycosides and Marine drugs: Glycosides, Basic ring system, classification, isolation, properties, qualitative analysis. Pharmacological activity of Senna glycosides, Cardiacglycosides-Digoxin, digitoxin, Steroidal saponins glycosides-Diosgenin, hecogenin. Plant pigments: Occurrence and general methods of structure determination, isolation and synthesis of quercetin and chloride.Marine drugs -Selected Drug cyanidin Molecules: Cardiovascular active substances, Cytotoxic compounds, antimicrobial compounds, antibiotic compounds, Anti-inflammatory agents. Marine toxins. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended 1. Gurdeep R Chatwal (2016), Organic chemistry of Natural products, Text Volume I&II, 5th edition, Himalaya publishing House. 2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of Natural Products, Revised edition, Narosa Publishers. Reference Books 1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to Modern Techniques of Plant Analysis, 4th edition, Indian reprint, Springer. 2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2 nd edition, New age international (P) limited, New Delhi.

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1:To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3:To analyze the isolated drugs

CO4:To apply various techniques to discover new alternative medicines.

CO5:To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIOMOL	ECULES A	ND I	HETERO	CYC	LIC COMPO	DUNDS
Course Paper No.	Elective V	T					
Category	Elective	Year	II	Credits	4	Course	
Cutegory	Dicetive	Semester	III	Credits	•	Code	
Instructional	Lecture	Tutorial	Lab	Practice	I	Total	
hours per week	4	1	-			5	
Prerequisites		wledge of cl					
Objectives of the			ncepts	s and biol	ogica	al importance	of biomolecules
course	and natural	•	functi	ons of car	·hohy	drates protei	ns, nucleic acids,
	_	d hormones		10113 01 041	oony	drates, protein	ns, nucleic delds,
	To underst	and the fund	ctions	of alkaloi	ds an	d terpenoids.	
		ite the stru	cture	determina	ation	of biomolec	ules and natural
	products.	and constr	mat th	o stanstni	o of	novy allzalaid	s and terpenoids
		ent methods		ie siructui	C 01	new arkanoiu	s and terpenoids
Course Outline				netabolisr	n of	f carbohydra	ites: Definition,
	classificati	on and bio	ologica	al role of	f car	bohydrates. n	monosaccharides:
	Linear and	ring structu	ıres (l	Haworth f	ormu	la) of ribose,	glucose, fructose
	and mann	ose (struct	ure o	determinat	ion	not required), physical and
	chemical	properties	of g	glucose a	and	fructose.Disa	ccharides: Ring
	structures	(Haworth	form	ula) –oc	curre	nce, physical	l and chemical
	properties	of maltose	e, lac	tose and	sucr	ose. Polysaco	charides: Starch,
	glycogen	and cellul	ose -	- structui	e ar	nd properties	s, glycolysis of
	carbohydra	ites.					
	UNIT-II:	Steroids a	and l	Hormones	:Stero	oids-Introducti	ion, occurrence,
	nomenclati	are, config	guratio	on of s	ubsti	tuents. Diels	s' hydrocarbon,
	stereochem	nistry, classi	ficatio	on, biolog	ical i	mportance, co	olour reactions of
	sterols, che	olesterol-oc	curren	ice, tests,	phys	iological activ	vity, biosynthesis
	of cholest	erol from	squa	lene. Hor	mone	es-Introduction	n, classification,
	functions	of sex hor	mone	s- androg	ens	and estrogens	s, adrenocortical
	hormones-	cortisone ar	nd cor	tisol struc	ture	and functions	of non-steroidal
	hormones-	adrenaline a	nd thy	yroxin.			
	UNIT-III:	Proteins a	ndnuc	leicacids:	Sep	paration and	purification of
	proteins -	dialysis, g	gel fi	ltration a	nd el	lectrophoresis	. Catabolism of
	amino a	cids -	transa	amination,	O	xidative de	amination and
	decarboxyl	ation. Bios	ynthe	sis of prot	eins:	Role of nucle	eic acids. Amino
	acid metab	oolism and	ureac	ycle. Stru	cture,	methods for	the synthesis of

nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis ofoligonucleotides. UNIT-IV: Vitamins: Introduction, Classification, Sources and deficiency diseases. Structural determination and synthesis of Vitamin A₁, Vitamin B₆, Vitamin B₁₂, Folic acid, Vitamin H, Vitamin E and Vitamin K₂. UNIT-V:Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to Component (is a part be solved of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Knowledge, Problem solving, Analytical ability, Professional Skills acquired from this course Competency, Professional Communication and Transferable skills. Recommended T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Text Wiley VCH, North America, 2007. I. L. Finar, Organic Chemistry Vol-2, 5thedition,PearsonEducation Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi, 2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009. I. L. Finar, Organic Chemistry Vol-1, 6thedition, Pearson Education Reference Books Asia,2004. Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co, 2000. Shoppe, Chemistry of the steroids, Butterworthes, 1994. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004. M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, Daya Publishing House, Delhi, 2005. Website and ps://www.organic-chemistry.org/

e-learning source	ps://www.studyorgo.com/summary.php
	ps://www.clutchprep.com/organic-chemistry

Students will be able:

CO1: To understand the basic concepts of biomolecules and natural products.

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by differen methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Г .										
Title of the	SKILL ENHANCEMENT COURSE- II									
Course	DD	EDADATION (E CO	ONICHIMIED D	DADI	ICTC				
Paper No.	SEC-II	EPARATION (JF CC	JNSUMER P.	KUDU	JC18				
Category	SEC-II	Year	Ι	Credits	2	Course				
Category	SEC	Semester	-	I Code						
Instructional	Lecture	Tutorial Lab Practice Total								
hours per	2			-		2				
week	_					_				
Prerequisites	Basic concepts	of Consumer P	roduc	ts						
Objectives of		c knowledge in	consu	mer products i	n cher	nistry and mo	dern			
the course	trend in Industr	у								
Course Outline	Preparati	on of following (Consu	mer Products,						
Outilile	1. Soaps	S								
	2. Laun	dry Detergents								
	3. Sham	poos								
	4. Talc	powder								
	5. Incen	se sticks								
	6. Tooth	n paste								
	7. Cand	les								
	8. Lysol									
	9. Disin	fectants								
		wash soaps								
Extended	_	ed to the above to	-		-					
Professional		PSC / TRB / NE	T/ UC	C-CSIR / GA	TE/TI	NPSC others to	o be			
Component	solved	d during the Tuto	wial h	oure)						
Skills		oblem solving, A			fessio	nal Competenc	.v			
acquired from		mmunication and	-	-			,			
this course										
Recommende		dunia.com/exam	_	_	nts-pre	eparation-				
d Website		cess-examples-sc								
		dc.gov/infection	contro	ol/guidelines/di	isinfec	tion/disinfection	on-			
	methods/chemic		11	/10//5 2/521	70 /D 4 3	HOODEGEG	N 7 T			
		no.org/bitstream/l			/2/PA	HOCDECECC	<u> </u>			
		ng.pdf?sequence= ncbi.nlm.nih.gov/			2/5/101	2/				
	-	.com/preparation			L4J4Y ₄	<u> </u>				
	mups.//iaumonk	.com/preparation	-01-10	oui-						

SEMESTER- IV

Title of the Course	COORDINATION CHEMISTRY – II
Paper No.	CoreX

Category	Core	Year	II	Credits	4	Course			
		Semester	IV			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week Prerequisites	4 Rosio kn	1 owledge of i	inoro	onio chon	nict m	5			
Objectives of the		Basic knowledge of inorganic chemistry To recognize the fundamental concepts and structural aspects of							
course	`	organometallic compounds.							
		To learn reactions of organometallic compounds and their catalytic							
	behaviou		at tha	atmiatima	of o	condination as	manayada yaina		
		opic tools.	et tile	structure	OI C	oordination co.	mpounds using		
	To under	stand the str			_	n coordination			
G 0 1						selected comp	lexes.		
Course Outline		·		0		ompounds:			
	Classifica	ation of orga	anom	etallic cor	npou	nds based on M	M-C bond – 18		
	and 16 e	lectron rule;	; Bon	ding in m	etal	 olefin compl 	exes (example:		
	Ziese's	salt), metal	l-acet	ylene and	d m	etal-allyl com	plexes; Metal-		
	cyclopent	tadienyl con	nplex	es – Exan	ples	and MO appro	each to bonding		
	in metallo	ocenes; flux	ional	isomerism	ı. Me	tal – carbonyl o	complexes: MO		
	diagram o	of CO; Struc	cture	and bondi	ng –	bonding modes	s, MO approach		
	of M-CC	bonding,	π-acc	eptor natu	ire o	f carbonyl gro	oup, synergistic		
	effect (st	tabilization	of lo	ower oxid	ation	states of me	tals); Carbonyl		
	clusters:	Low nucle	earity	and hig	h nu	clearity carbo	nyl clusters –		
	Structure	s based on p	oolyh	edral skele	eton e	electron pair the	eory or Wade's		
	rule.								
	UNIT-II	: Reactions	and	l catalysis	s of	organometalli	c compounds:		
	Reactions	s of organor	netal	lic compoi	unds:	Oxidative add	ition, reductive		
	elimination	on $(\alpha \text{ and })$	3 elir	minations)	, mig	gratory insertio	n reaction and		
	metathesi	is reaction.C)rgan	o-metallic	catal	ysis: Hydrogen	ation of olefins		
	(Wilkinso	on's catalys	t), hy	ydroformy	latio	n of olefins u	sing cobalt or		
	rhodium	catalysts (or	xo pr	ocess), ox	idatio	on of olefin (W	acker process),		
	olefin iso	merisation,	wate	r gas shift	reac	tion, cyclo-olig	gomerisation of		
	acetylene	s using Rep	pe's c	atalysts, N	Ionso	onto process.			
	UNIT-II	I: Inorganio	c spec	ctroscopy	-I:				
	IR spectr	roscopy Effe	ect o	f coordina	tion	on the stretch	ing frequency-		
	sulphato,	carbonato,	sulph	ito, aqua, i	nitro,	thiocyanato, c	yano, thiourea,		
	DMSO c	complexes;	IR sp	pectroscop	y of	carbonyl com	pounds. NMR		
	spectrosc	opy- Introd	uction	n, applicat	ions	of 1H, 15N, 1	9F, 31P-NMR		

spectroscopy in structural identification of inorganic complexes, fluxional molecules, quadrupolar nuclei- effect in NMR spectroscopy.

UNIT-IV: Inorganic spectroscopy-II:

Introductory terminologies: g and A parameters-definition, explanation and factors affecting g and A; Applications of ESR to coordination compounds with one and more than one unpaired electrons – hyperfine and secondary hyperfine splitting and Kramer's doublets; ESR spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II) complexes, $[(NH_3)_5Co-O_2-Co(NH_3)_5]^{5+}$ bis(salicylaldimine)copper(II) and Mossbauer effect, Recoil energy, Mossbauer spectroscopy – Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds.

UNIT-V:Photo Electron Spectroscopy:

Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N_2 , N_2) and heteronuclear diatomic molecules (N_2 , N_2) and heteronuclear diatomic molecules (N_2 , N_3) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations.Optical Rotatory Dispersion – Principle of CD and ORD; N_2 and N_3 isomers in complexes, Assignment of absolute configuration using CD and ORD techniques.

Extended Professional Component

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006
- 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008
- 3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
- 4. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013.
- 5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.

Reference Books	1. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000.
	2. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1 st edition, Springer-Verlag Berlin Heidelberg, 2011.
	3. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	4. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976.
	5. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	PHYSICAL CHEMISTRY-II
Course	

Paper No.	Core XI									
Category	Core	Year	II	Credits	4	Course				
T	T ,	Semester	IV	1.0		Code				
Instructional	Lecture	Tutorial 1	L	ab Practi	ce	<u>T</u>	<u>'otal</u> 5			
hours per week Prerequisites	Rasic kno	l nwledge of	nhvsi	- ical chemi	ictry		3			
Objectives of the		Basic knowledge of physical chemistry To understand the essential characteristics of wave functions and need								
course	1	or the quantum mechanics.								
	To know	the importa	nce c	of quantum	mec	hanical models	s of particle in a			
		l rotor and h				hydrogen and	polyelectronic			
	systems.	the quan			• •	nyerogen une	polycicedonic			
		•		•			e point groups.			
	To prediction To proup the		tiona	l modes,	hybri	dization using	he concepts of			
Course Outline	_	Ory. Introducti o	n							
				Uncortain	tv n	rinciple Derti	cle wave and			
	-		•		• •	-				
	`	1		ŕ		· 1 1	f wave function.			
	Properties	s of wave	func	tion, Nori	naliz	ed, Orthogona	l, orthonormal,			
	Eigen	values, E	Eigen	functio	ns,	Hermitian	properties of			
	operators	.Introductio	n to	quantum	mec	hanics-black	body radiation,			
	photoelec	etric effect,	hydro	ogen spect	rum.	Need for quan	tum mechanics,			
	Postulates	s of Quantu	ım M	Iechanics,	Schr	odinger wave	equation, Time			
	independe	ent and time	depe	endent						
	UNIT-II:	Quantum	mod	els:						
	Particle	in a box	-1D,	two din	nensi	onal and thr	ee-dimensional,			
	degenerac	cy, applicat	ion t	o linear o	conju	gated molecula	ar system, free			
	particles,	ring system	s.Haı	rmonic Os	cillate	or-wave equation	on and solution,			
	anharmor	nicity, force	con	stant and	its s	significance.Rig	gid Rotor-wave			
	equation	and solution	on, c	alculation	of r	otational cons	tants and bond			
	length of	diatomic m	olecu	les.						
	UNIT-III	I: Applicat	tions	to Hydr	ogen	and Poly e	lectron atoms:			
	Hydroger	n atom and h	nydro	gen like ic	ons, F	Iamiltonian-wa	we equation and			
	solutions,	, radial ar	nd a	ngular fu	nctio	ns, representa	ntion of radial			
	distributio	on functions	s.App	proximatio	n me	thods –variatio	n methods: trial			
	wave fun	ction, varia	tion i	ntegral an	d app	olication to par	ticle in 1D box.			
	Perturbati	ion method	- firs	st order ap	plica	tions.Hatrefock	x self-consistent			
	field met	thod, Hohe	nberg	g-Kohn th	eorei	m and Kohn-S	Sham equation,			
	Helium	atom-electro	on s	pin, pauli	s ex	clusion princi	ple and Slater			

determination. **UNIT-IV:** Group theory: Groups, sub groups, symmetry elements, operations, classificationaxial and non-axial. Dihedral point groups- C_n, C_{nh}, D_n, D_{nh}, D_{nd}, Tdand Oh.Matrix representation and classes of symmetry operations, reducible irreducible and direct product representation. The Great orthogonality theorem - irreducible representation and reduction formula, construction of character table for C_{2v}, C_{2h}, C_{3v} and D_{2h} point groups. **UNIT-V: Applications of quantum and group theory:** Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear function and LCAO methods. Electronic system: Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene. Extended Questions related to the above topics, from various competitive **Professional** examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended R.K. Prasad, Quantum Chemistry, New Age International Text Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John 2. Wiley & Sons, 2003, 2nd edition. 3. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. 4. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. 5. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition. Reference Books 1. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. 2. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books

	Pvt. Ltd, New Delhi, 2012.
	3. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum
	Mechanics of Chemical
	Systems, Oxford & IBH Publishing Co., New Delhi, 1999.
	4. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,
	Prentice Hall. Inc, 1980
	5. J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,
	2011, Reprint.
Website and	1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3-Strong, 2-Medium, 1-Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ANALYTICAL INSTRUMENTATION TECHNIQUE
Course	PRACTICAL(Industry Entrepreneurship)

Paper No.	Elective	VI						
Category	Core	Year	II	Credits	3	Course		
		Semester	IV			Code		
Instructional	Lecture	Tutorial	L	ab Practi	ce	T	otal	
hours per week	-	-		4			4	
Prerequisites			1			1		
Objectives of the	To design	n chromatog	raphi	c methods	for i	dentification of	species.	
course	_	_	_				tal methods of	
	analysis.							
	To evalua	ate different	t cont	aminants	in m	aterials using tu	urbidimetry and	
	conductiv	vity measure	ement	S.				
	To analy	ze constitu	ents	in materia	als u	sing emission	and absorption	
	technique	es.						
Course Outline	UNIT-I:							
				-		onductance of a		
						ying Ostwald di		
						nstant of the aci		
				-		onductance of a	Ü	
		•					ning the validity	
		_		•		g law at high di		
			ric tit	ration of a	ı mıx	ture of HCI and	CH ₃ COOH Vs	
		aOH.	mia tit	nation of N	JII.C	l Vs NaOH.		
						li vs NaOh. loona Vs HCl.		
						re of HCl and (
		aOH	C titi	mon or a r	ΠΛιι	ire of free and c		
			n of n	K, of wea	k aci	d by EMF meth	hod	
		otentiometri	_					
		otentiometri						
						re of Chloride	and Iodide Vs	
		$gNO_{3.}$						
	11. D	etermination	n of tl	he pH of b	uffer	solution by EM	/IF method	
	us	sing Quinhy	drone	and Calo	mel e	electrode.		
	12. St	tudy of the i	dy of the inversion of cane sugar in the presence of acid by					
	Po	olarimetric 1	plarimetric method.					
	UNIT-II							
						orimetric metho		
				•	-	notometric meth		
						etrically the mo		
		-		-	ı equ	ilibrium constar	nt for the	
	complex formation.							
	2. Determination of the amount (mol/L) of ferricyanide present in the given solution using cyclic voltammetry.							
		_				efficient of ferri	cvanide using	
		yclic voltam			,11 CO		leyanide using	
	_		-		d red	ox potential of	ferri-	
						cyclic voltamme		
		-		-	_	ate present in the	-	
		olution using			_	_	51,011	
		ZIGOTI GOTILE	5 1 10p		· iuil			

	 Estimation of the amount of nitrate present in the given solution using spectrophotometric method. Heavy metal analysis in textiles and textile dyes by AAS Determination of caffeine in soft drinks by HPLC Analysis of water quality through COD, DO, BOD measurements. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry Estimation of chromium in steel sample by spectrophotometry Determination of Stern-Volmer constant of Iodine quenching by fluorimetry Determination of ascorbic acid in real samples using Differential Pulse Voltammetry and comparing with specifications Separation of (a) mixture of Azo dyes by TLC (b) mixture of metal ions by Paper chromatography Estimation of chlorophyll in leaves and phosphate in waste water by colorimetry. Estimation of Fe(II) by 1,10 phenonthroline using spectrophotometry
	UNIT-III: Interpretation and identification of the given spectra of various organic compounds arrived at from the following instruments 1.UV-Visible 2.IR 3.Raman 4.NMR 5.ESR 6.Mass etc.,
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a part of internal component only, Not to be included in the external examination question paper)	to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Hom this course	Competency, Frotessional Communication and Transferable skills.
Recommended Text	 Vogel's Text book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 2003. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989. J. D. Woollins, Inorganic Experiments; VCH: Weinheim, 1995.

	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,						
	Viva						
	Books, New Delhi,2009.						
	5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.						
	Viswanathan Co. Pvt., 1996.						
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –						
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.						
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.						
	Chand and Co., 2011.						
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel						
	Publishing House, 2001.						
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in						
	Physical Chemistry, 8th edition, McGraw Hill, 2009.						
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.						
	Chand and Co., 1987.						
Website and	1. https://bit.ly/3QESF7t						
e-learning source	1. https://oic.ry/5QE51*/t						
	2. https://bit.ly/3QANOnX						

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
--	----	-------	-----	-----	-----	-----	-----	-----	-----	------

CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the Course	SKILL ENHANCEMENT COURSE- IV PROFESSIONAL COMPETENCY SKILL ENHANCEMENT COURSE							
Paper No.	SEC-IV		C	JUKSE				
Category	SEC	Year	Ι	Credits	2	Course Code		
		Semester	I					
Instructional	Lecture	Tutorial Lab Practice Total						
hours per week	2 - 2							
Prerequisites	Basic concepts of Professional Competency Skill Enhancement							
Objectives of the course	To provide basic knowledge Professional Competency							
Course Outline	Training fo	UPSC/TNPSC/OtherCompetitiveExaminations(2h ours)						

EXTRA DISCIPLINARY COURSES FOR OTHER DEPARTMENTS (NOT FOR MATHEMATICS STUDENTS)

Students from other Departments may also choose any one of the following as Extra Disciplinary Course.

ED-I: Chemistry for Life Sciences

ED-II: Chemical conservation

ED-III: Chemistry in food preservation

ED-IV: Chemistry for Social studies

ED-V: Chemistry in consumer products

Title of the Course	EDC									
	CHEMISTRY FOR FOOD PRESERVATION									
Paper No.	EDC-1									
Category	EDC	Year	I Credits 2 Course							
		Semester	I Code							
Instructional hours	Lecture	Tutorial	La	ab	Practice		Total			
per week	3				-		3			
Prerequisites	Basic conce	epts of Food p	reserv	va	tion					
Objectives of the course	of processed	To learn important methods for food preservation are to ensure the qualit of processed food. To prevent Microbial contaminations								
	To kill path					~				
Course Outline	UNIT-I:	e 1000 sponage	anu	10	ou poisonin	g.				
Course Outline		ciples of Food	Drese	rt)	vation					
	A. Time	a. Meaning, m				rhand	res in foods			
	B Use	of High tempe								
	D . 030	Moist and I			-	vatio	11)			
	a.	Blanching	<i>-15</i> 110	Ju	t inothous					
	b.	Dehydration	n							
	c.	Concentrati								
	d.	Canning								
	e.	Commercia	l steri	ili	zation					
	f.	Pasteurizati	on							
	UNIT-II:									
	A. Use	of Low Tempe	rature	es						
	a.	Cold Preser	vatio	n:	Freezing ar	nd Re	frigeration- Air	ſ		
		freezing								
	b.	Indirect cor	tact f	re	ezing					
	c.	Immersion			g					
	d.	Dehydro-fro	eezing	g						
	e.	Cryo-freezi	_							
	f. Changes in foods during refrigeration ar									
	storage									
	B. Use of dehydration and Concentration									
					_		and mass transfe			
	a.	•	d che	m	ical changes	s dur	ing dehydration	L		
		concentration					1 / 1 .			
	b.				nd technique					
		vection, drum					*			
	c.	Use of va	rious	e	vapourators	for	concentration	of		

	foods
	UNIT-III: Use of Ionizing radiation and microwave heating a. Ionizing radiations and sources b. Units of radiation c. Radiation effects d. Mechanism of microwave heating e. Application of radiation technology B. Use of Fermentation a. Benefits and mechanisms of fermentation b. Fermented food products e.g Beer, Wine, Soya sauce, Cheese, Soya bean products c. Microbial vs Industrial Fermentation UNIT-IV: A. Use of Food Additives a. Broad classes b. Intentional and unintentional food additives c. Laws and regulations B. Food Enzymes and their applications in Food industry. Application of Hurdle Technology a) Fermentation UNIT-V: Recent advances in food preservation a. Pulse electric field special packaging b. Use of technology for minimal processing for preservation of fresh foods c. Use of Antioxidants in food preservation d. Cold pressed juices e. Use of Natural Preservatives f. Preservatives on food labels
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
paper) Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferable skills.
Recommended Text	1.Borvers, J. (1992). Food Theory and Application (2ndEd), New York: Maxwell MacMillan International Edition. Manay, N. S. and Sharaswamy, S. M. (1997).Foods: Facts and Principles New Delhi: New Age International Publishers. 2.McWilliams, M (2007). Foods: Experimental Perspectives 5th Ed, New Jersey: Macmillar Publishing Co. Potter, N. N. and Hutchkiss, J. H. (1997).Food Science, 5th Ed, New Delhi: CBS Publishers and Distributors. 3 Rick Parker (2003) Introduction to Food Science, New York: Delmar Thomson Learning. 4.Scottsmith and Hui Y.H (Editiors) (2004) Food Processing —

5. Subbulakshmi, G and Udipi, S. A. (2001). Foods Processing and
Preservation, New Delhi: New Age International (P) Ltd.
Publishing.
6.Swaminathan, M. (1995).Food Science Chemistry and
Experimental Food. The Bangalore Printing and Publishing Co.
Ltd.
7. Vacklavick, V. and Christian, E. (2003). Essentials of Food
Science. New York: Kluwer Academic/ Plenum Publisher.

Title of the Course	EDC					
	CHEMISTRY IN CONSUMER PRODUCTS					
Paper No.	EDC-II					
Category	EDC	Year	I	Credits	2	Course
		Semester	I			Code
Instructional hours	Lecture	Tutorial	La	Lab Practice		Total
per week	2		-			2

Prerequisites	Basic concepts of Consumer Products				
Objectives of the	To provide basic knowledge in consumer products in chemistry				
Course Outline	and modern trend in Industry. UNIT-I: INORGANIC CONSUMER PRODUCTS				
Course Outline					
	Ceramic materials – Preparation, Properties and Uses.				
	Glass- Preparation, Properties and Uses. Graphite- Preparation, Properties and Uses.				
	Silica Aerogel- Preparation, Properties and Uses.				
	UNIT-II:SOAPS AND DETERGENTS				
	Saponification of oils and fats. Manufacture of soaps. Formulation				
	of toilet soaps. Different ingredients used. Their functions.				
	Mechanism of action of soap. ISI specifications. Testing				
	procedures/limits.				
	Anionic detergents: Manufacture of LAB (linear alkyl benzene).				
	Sulphonation of LAB preparation of acid slurry. Different				
	ingredients in the formulation of detergent powders and soaps.				
	Liquid detergents. Foam boosters. AOS (alpha olefin sulphonates.				
	cationic detergents: examples. Manufacture and applications.				
	Mechanism of action of detergents Comparison of soaps and				
	detergents. Biodegradation – environmental effects. IS				
	specifications / limits.				
	UNIT-III:SHAMPOOS				
	Manufacture of SLS and SLES. Ingredients. Functions. Different				
	kinds of shampoos – anti-dandruff, anti-lice, herbal and bab shampoos. Hair dye. Manufacture of conditioners. Coco betaines coco diethanolamides – ISI specifications. Testing procedures ar				
	limits.				
	UNIT-IV:SKIN PREPARATIONS				
	Face and skin powders. Ingredients, functions. Different types.				
	Snows and face creams. Chemical ingredients used. Anti				
	perspirants. Sun screen preparations. UV absorbers. Skin bleaching				
	agents. Depilatories. Turmeric and Neem preparations. Vitamin oil.				
	Nail polishes: nail polish preparation, nail polish removers. Article				
	removers. Lipsticks, roughes, eyebrow pencils. Ingredients and				
	functions – hazards. ISI specifications.				

	UNIT-V:
	Leading firms, brand names, choosing the right product. Packing
	regulations. Marketing. Licensing – drug license – legal aspects.
	GMP – ISO 9000/12000 – consumer education. Evaluation of the
	product – advertisements.
Extended Professional Component (is a part of internal component	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
only, Not to be	(To be discussed during the Tutorial hours)
included in the	
external examination question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferable skills.
Recommended Text	1.Gobala Rao.S , Outlines of chemical technology, Affiliated East
	West press,1998
	2. Kafaro, Wasteless chemical processing, Mir publishers, 1995.
	3.Sawyer.W, Experimental cosmetics, Dover publishers, New york,
	2000.